Suppr超能文献

细胞色素 o 泛醇氧化酶的失活可解除恶臭假单胞菌 GPo1 烷烃降解途径的分解代谢阻遏。

Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.

作者信息

Dinamarca M Alejandro, Ruiz-Manzano Ana, Rojo Fernando

机构信息

Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Spain.

出版信息

J Bacteriol. 2002 Jul;184(14):3785-93. doi: 10.1128/JB.184.14.3785-3793.2002.

Abstract

Expression of the alkane degradation pathway encoded by the OCT plasmid of Pseudomonas putida GPo1 is regulated by two control systems. One relies on the transcriptional regulator AlkS, which activates expression of the pathway in the presence of alkanes. The other, which is a dominant global regulation control, represses the expression of the pathway genes when a preferred carbon source is present in the growth medium in addition to alkanes. This catabolite repression control occurs through a poorly characterized mechanism that ultimately regulates transcription from the two AlkS-activated promoters of the pathway. To identify the factors involved, a screening method was developed to isolate mutants without this control. Several isolates were obtained, all of which contained mutations that mapped to genes encoding cytochrome o ubiquinol oxidase, the main terminal oxidase of the electron transport chain under highly aerobic conditions. Elimination of this terminal oxidase led to a decrease in the catabolic repression observed both in rich Luria-Bertani medium and in a defined medium containing lactate or succinate as the carbon source. This suggests that catabolic repression could monitor the physiological or metabolic status by using information from the electron transport chain or from the redox state of the cell. Since inactivation of the crc gene also reduces catabolic repression in rich medium (although not that observed in a defined medium), a strain was generated lacking both the Crc function and the cytochrome o terminal oxidase. The two mutations had an additive effect in relieving catabolic repression in rich medium. This suggests that crc and cyo belong to different regulation pathways, both contributing to catabolic repression.

摘要

恶臭假单胞菌GPo1的OCT质粒编码的烷烃降解途径的表达受两种控制系统调控。一种依赖转录调节因子AlkS,它在烷烃存在时激活该途径的表达。另一种是占主导地位的全局调控控制,当生长培养基中除了烷烃之外还存在首选碳源时,它会抑制该途径基因的表达。这种分解代谢物阻遏控制通过一种特征不明的机制发生,该机制最终调节该途径的两个由AlkS激活的启动子的转录。为了确定其中涉及的因素,开发了一种筛选方法来分离没有这种控制的突变体。获得了几个分离株,所有分离株都含有映射到编码细胞色素o泛醇氧化酶基因的突变,细胞色素o泛醇氧化酶是高需氧条件下电子传递链的主要末端氧化酶。去除这种末端氧化酶导致在丰富的Luria-Bertani培养基和含有乳酸盐或琥珀酸盐作为碳源的限定培养基中观察到的分解代谢物阻遏降低。这表明分解代谢物阻遏可能通过利用来自电子传递链或细胞氧化还原状态的信息来监测生理或代谢状态。由于crc基因的失活也会降低丰富培养基中的分解代谢物阻遏(尽管在限定培养基中未观察到),因此构建了一种同时缺乏Crc功能和细胞色素o末端氧化酶的菌株。这两个突变在缓解丰富培养基中的分解代谢物阻遏方面具有累加效应。这表明crc和cyo属于不同的调控途径,两者都对分解代谢物阻遏有贡献。

相似文献

2
Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
J Bacteriol. 2001 Nov;183(21):6197-206. doi: 10.1128/JB.183.21.6197-6206.2001.
5
The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.
Environ Microbiol. 2013 Jan;15(1):227-41. doi: 10.1111/j.1462-2920.2012.02863.x. Epub 2012 Aug 28.
7
The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation.
Mol Genet Genomics. 2001 Oct;266(2):199-206. doi: 10.1007/s004380100539.
8
Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions.
J Bacteriol. 2005 Jun;187(11):3678-86. doi: 10.1128/JB.187.11.3678-3686.2005.
9

引用本文的文献

1
Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate.
mSystems. 2024 Aug 20;9(8):e0077024. doi: 10.1128/msystems.00770-24. Epub 2024 Jul 9.
3
Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in M2.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0085223. doi: 10.1128/aem.00852-23. Epub 2023 Sep 19.
6
In-depth characterization of denitrifier communities across different soil ecosystems in the tundra.
Environ Microbiome. 2022 Jun 11;17(1):30. doi: 10.1186/s40793-022-00424-2.
7
Integrative Assessments on Molecular Taxonomy of ZJ and Its Environmental Adaptation Based on Mobile Genetic Elements.
Front Microbiol. 2022 Feb 16;13:826829. doi: 10.3389/fmicb.2022.826829. eCollection 2022.
9
Stepwise genetic engineering of Pseudomonas putida enables robust heterologous production of prodigiosin and glidobactin A.
Metab Eng. 2021 Sep;67:112-124. doi: 10.1016/j.ymben.2021.06.004. Epub 2021 Jun 24.

本文引用的文献

2
The growth of micro-organisms in relation to their energy supply.
J Gen Microbiol. 1960 Dec;23:457-69. doi: 10.1099/00221287-23-3-457.
4
The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation.
Mol Genet Genomics. 2001 Oct;266(2):199-206. doi: 10.1007/s004380100539.
5
Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
J Bacteriol. 2001 Nov;183(21):6197-206. doi: 10.1128/JB.183.21.6197-6206.2001.
6
Quinones as the redox signal for the arc two-component system of bacteria.
Science. 2001 Jun 22;292(5525):2314-6. doi: 10.1126/science.1059361.
8
Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.
Microbiology (Reading). 2001 Apr;147(Pt 4):973-979. doi: 10.1099/00221287-147-4-973.
9
Generalized approach to the regulation and integration of gene expression.
Mol Microbiol. 2001 Mar;39(5):1116-23. doi: 10.1111/j.1365-2958.2001.02299.x.
10
The black cat/white cat principle of signal integration in bacterial promoters.
EMBO J. 2001 Jan 15;20(1-2):1-11. doi: 10.1093/emboj/20.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验