Suppr超能文献

crc基因在恶臭假单胞菌GPo1烷烃降解途径分解代谢阻遏中的作用。

Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.

作者信息

Yuste L, Rojo F

机构信息

Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

出版信息

J Bacteriol. 2001 Nov;183(21):6197-206. doi: 10.1128/JB.183.21.6197-6206.2001.

Abstract

Expression of the alkane degradation pathway encoded in the OCT plasmid of Pseudomonas putida GPo1 is induced in the presence of alkanes by the AlkS regulator, and it is down-regulated by catabolic repression. The catabolic repression effect reduces the expression of the two AlkS-activated promoters of the pathway, named PalkB and PalkS2. The P. putida Crc protein participates in catabolic repression of some metabolic pathways for sugars and nitrogenated compounds. Here, we show that Crc has an important role in the catabolic repression exerted on the P. putida GPo1 alkane degradation pathway when cells grow exponentially in a rich medium. Interestingly, Crc plays little or no role on the catabolic repression exerted by some organic acids in a defined medium, which shows that these two types of catabolic repression can be genetically distinguished. Disruption of the crc gene led to a six- to sevenfold increase in the levels of the mRNAs arising from the AlkS-activated PalkB and PalkS2 promoters in cells growing exponentially in rich medium. This was not due to an increase in the half-lives of these mRNAs. Since AlkS activates the expression of its own gene and seems to be present in limiting amounts, the higher mRNA levels observed in the absence of Crc could arise from an increase in either transcription initiation or in the translation efficiency of the alkS mRNA. Both alternatives would lead to increased AlkS levels and hence to elevated expression of PalkB and PalkS2. High expression of alkS from a heterologous promoter eliminated catabolic repression. Our results indicate that catabolic repression in rich medium is directed to down-regulate the levels of the AlkS activator. Crc would thus modulate, directly or indirectly, the levels of AlkS.

摘要

恶臭假单胞菌GPo1的OCT质粒中编码的烷烃降解途径的表达在烷烃存在的情况下由AlkS调节因子诱导,并且通过分解代谢阻遏作用而下调。分解代谢阻遏效应降低了该途径中两个由AlkS激活的启动子(称为PalkB和PalkS2)的表达。恶臭假单胞菌的Crc蛋白参与了对某些糖和含氮化合物代谢途径的分解代谢阻遏。在此,我们表明,当细胞在丰富培养基中指数生长时,Crc在对恶臭假单胞菌GPo1烷烃降解途径施加的分解代谢阻遏中起重要作用。有趣的是,Crc在限定培养基中由某些有机酸施加的分解代谢阻遏中作用很小或没有作用,这表明这两种类型的分解代谢阻遏在遗传上是可以区分的。crc基因的破坏导致在丰富培养基中指数生长的细胞中,由AlkS激活的PalkB和PalkS2启动子产生的mRNA水平增加了六到七倍。这不是由于这些mRNA半衰期的增加。由于AlkS激活其自身基因的表达,并且似乎以有限的量存在,因此在没有Crc的情况下观察到的较高mRNA水平可能是由于转录起始增加或alkS mRNA的翻译效率增加所致。这两种情况都会导致AlkS水平增加,从而导致PalkB和PalkS2的表达升高。来自异源启动子的alkS高表达消除了分解代谢阻遏。我们的结果表明,丰富培养基中的分解代谢阻遏旨在下调AlkS激活剂的水平。因此,Crc将直接或间接地调节AlkS的水平。

相似文献

1
Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
J Bacteriol. 2001 Nov;183(21):6197-206. doi: 10.1128/JB.183.21.6197-6206.2001.
5
The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.
Environ Microbiol. 2013 Jan;15(1):227-41. doi: 10.1111/j.1462-2920.2012.02863.x. Epub 2012 Aug 28.
6
Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions.
J Bacteriol. 2005 Jun;187(11):3678-86. doi: 10.1128/JB.187.11.3678-3686.2005.
7
10
Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0.
Appl Environ Microbiol. 2005 Aug;71(8):4191-8. doi: 10.1128/AEM.71.8.4191-4198.2005.

引用本文的文献

3
Implications of carbon catabolite repression for plant-microbe interactions.
Plant Commun. 2021 Dec 28;3(2):100272. doi: 10.1016/j.xplc.2021.100272. eCollection 2022 Mar 14.
6
Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas.
World J Microbiol Biotechnol. 2019 Aug 26;35(9):140. doi: 10.1007/s11274-019-2717-7.
7
CrgA Protein Represses AlkB2 Monooxygenase and Regulates the Degradation of Medium-to-Long-Chain -Alkanes in SJTD-1.
Front Microbiol. 2019 Mar 12;10:400. doi: 10.3389/fmicb.2019.00400. eCollection 2019.
9
Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains.
Front Microbiol. 2015 Oct 1;6:1042. doi: 10.3389/fmicb.2015.01042. eCollection 2015.
10
Enzymes and genes involved in aerobic alkane degradation.
Front Microbiol. 2013 May 28;4:116. doi: 10.3389/fmicb.2013.00116. eCollection 2013.

本文引用的文献

2
The growth of micro-organisms in relation to their energy supply.
J Gen Microbiol. 1960 Dec;23:457-69. doi: 10.1099/00221287-23-3-457.
4
Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.
Microbiology (Reading). 2001 Apr;147(Pt 4):973-979. doi: 10.1099/00221287-147-4-973.
5
Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST.
Appl Environ Microbiol. 2000 Apr;66(4):1305-10. doi: 10.1128/AEM.66.4.1305-1310.2000.
10
An alkane-responsive expression system for the production of fine chemicals.
Appl Environ Microbiol. 1999 Jun;65(6):2324-32. doi: 10.1128/AEM.65.6.2324-2332.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验