Rocher Christophe, Letellier Thierry, Copeland William C, Lestienne Patrick
EMI 99.29 INSERM, Génétique Mitochondriale, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
Mol Genet Metab. 2002 Jun;76(2):123-32. doi: 10.1016/s1096-7192(02)00024-0.
Different mechanisms have been proposed to account for mitochondrial DNA (mtDNA) instability based on the presence of short homologous sequences (direct repeats, DR) at the potential boundaries of mtDNA rearrangements. Among them, slippage-mispairing of the replication complex during the asymmetric replication cycle of the mammalian mitochondrial DNA has been proposed to account for the preferential localization of deletions. This mechanism involves a transfer of the replication complex from the first neo-synthesized heavy (H) strand of the DR1, to the DR2, thus bypassing the intervening sequence and producing a deleted molecule. Nevertheless, the nature of the bonds between the DNA strands remains unknown as the forward sequence of DR2, beyond the replication complex, stays double-stranded. Here, we have analyzed the base composition of the DR at the boundaries of mtDNA deletions and duplications and found a skewed pyrimidine content of about 75% in the light-strand DNA template. This suggests the possible building of a DNA triple helix between the G-rich neo-synthesized DR1 and the base-paired homologous G.C-rich DR2. In vitro experiments with the purified human DNA polymerase gamma subunits enabled us to show that the third DNA strand may be used as a primer for DNA replication, using a template with the direct repeat forming a hairpin, with which the primer could initiate DNA replication. These data suggest a novel molecular basis for mitochondrial DNA rearrangements through the distributive nature of the DNA polymerase gamma, at the level of the direct repeats. A general model accounting for large-scale mitochondrial DNA deletion and duplication is proposed. These experiments extend to a DNA polymerase from an eucaryote source the use of a DNA triple helix strand as a primer, like other DNA polymerases from phage and bacterial origins.
基于线粒体DNA(mtDNA)重排潜在边界处存在短同源序列(直接重复序列,DR),人们提出了不同机制来解释mtDNA的不稳定性。其中,有人提出在哺乳动物线粒体DNA的不对称复制周期中,复制复合物的滑动错配可解释缺失的优先定位。该机制涉及复制复合物从DR1新合成的第一条重链(H链)转移到DR2,从而绕过中间序列并产生缺失分子。然而,由于复制复合物之外的DR2正向序列保持双链状态,DNA链之间的键的性质仍然未知。在这里,我们分析了mtDNA缺失和重复边界处DR的碱基组成,发现轻链DNA模板中嘧啶含量约为75%,呈偏态分布。这表明在富含G的新合成DR1和碱基配对的富含G.C的同源DR2之间可能形成DNA三链螺旋。用纯化的人DNA聚合酶γ亚基进行的体外实验使我们能够证明,第三条DNA链可以用作DNA复制的引物,使用形成发夹结构的直接重复序列作为模板,引物可据此启动DNA复制。这些数据表明,在直接重复序列水平上,通过DNA聚合酶γ的分布特性,mtDNA重排具有新的分子基础。我们提出了一个解释大规模线粒体DNA缺失和重复的通用模型。这些实验将DNA三链螺旋链用作引物的用途扩展到了真核生物来源的DNA聚合酶,就像噬菌体和细菌来源的其他DNA聚合酶一样。