Weusten Jos J A M, van Drimmelen Harry A J, Lelie P Nico
bioMérieux, Boxtel, The Netherlands.
Transfusion. 2002 May;42(5):537-48. doi: 10.1046/j.1537-2995.2002.00099.x.
Blood transfusion centers around the world have introduced minipool NAT to reduce the risk of HBV, HCV, and HIV transmission by blood donations drawn in the infectious window phase. What would be the reduction in the residual risk when minipool NAT would be replaced by single-donation NAT?
A mathematic model was developed to estimate the probability of virus transmission by blood transfusion when NAT screening methods are used for virologic safety testing. The major assumptions used are threefold: 1) The viral nucleic acid concentrations in the early window phase of infection double in 2.8 (HBV), 0.74 (HCV), and 0.90 (HIV) days. 2) The detectability of low copy numbers of viral DNA or RNA by the screening assay can be described with a probit model. 3) The probability of infection depends linearly on the logarithm of the administered dose, with 50-percent infectivity rates at 10 (HBV and HCV) or 1000 (HIV) viral nucleic acid copies per transfusion unit (estimates based on NAT studies with samples of known infectivity in chimpanzees).
A reasonably simple equation was obtained that allows studying the effect of the sensitivity of the NAT assay and of the pool size used for screening on the residual risk of transfusion-transmitted infection. The computations are illustrated by using observed sensitivity estimates of various NAT methods. By using epidemiologic data among European donors over 1997 as baseline, the calculations predict that the incidence of virus transmission per 10-million RBC transfusions reduces with the following numbers when lowering the test pool size from 96 to 1 (single-donation testing): HBV from 11 to 13 to 3.3 to 5.1, HCV from 1.7 to 2.0 to 0.5 to 0.8, and HIV from 0.47 to 0.62 to 0.010 to 0.045 (ranges for the different NAT screening methods).
A proper mathematic model for the calculation of residual infection risk by blood transfusion helps understand the impact of introducing new NAT methods for blood safety testing.
世界各地的输血中心已采用混合样本核酸检测(minipool NAT)来降低因处于感染窗口期采集的血液捐赠而导致乙肝病毒(HBV)、丙肝病毒(HCV)和艾滋病毒(HIV)传播的风险。当混合样本核酸检测被单份捐赠核酸检测(single-donation NAT)取代时,残余风险会降低多少?
开发了一个数学模型,以估计在将核酸检测(NAT)方法用于病毒学安全性检测时通过输血传播病毒的概率。所采用的主要假设有三点:1)感染早期窗口期的病毒核酸浓度在2.8天(HBV)、0.74天(HCV)和0.90天(HIV)内翻倍。2)筛查检测对低拷贝数病毒DNA或RNA的可检测性可用概率单位模型来描述。3)感染概率与所输入剂量的对数呈线性关系,每单位输血输入10个(HBV和HCV)或1000个(HIV)病毒核酸拷贝时感染率为50%(基于对黑猩猩已知感染性样本的核酸检测研究估算)。
得出了一个相当简单的方程式,可用于研究核酸检测分析的灵敏度及用于筛查的样本池大小对输血传播感染残余风险的影响。通过使用各种核酸检测方法的观察灵敏度估计值来说明计算过程。以1997年欧洲献血者中的流行病学数据为基线,计算预测当将检测样本池大小从9份降低至1份(单份捐赠检测)时,每1000万次红细胞输血的病毒传播发生率会降低以下数值:HBV从11至13降至3.3至5.1,HCV从1.7至2.0降至0.5至0.8,HIV从0.47至0.62降至0.010至0.045(不同核酸检测筛查方法的范围)。
一个用于计算输血残余感染风险的合适数学模型有助于理解引入新的核酸检测方法进行血液安全性检测的影响。