Sheridan Douglas L, Berlot Catherine H, Robert Antoine, Inglis Fiona M, Jakobsdottir Klara B, Howe James R, Hughes Thomas E
Department of Cellular and Molecular Physiology, Yale University Medical School, 330 Cedar St, New Haven, CT 06520, USA.
BMC Neurosci. 2002 Jun 19;3:7. doi: 10.1186/1471-2202-3-7.
The jellyfish green fluorescent protein (GFP) can be inserted into the middle of another protein to produce a functional, fluorescent fusion protein. Finding permissive sites for insertion, however, can be difficult. Here we describe a transposon-based approach for rapidly creating libraries of GFP fusion proteins.
We tested our approach on the glutamate receptor subunit, GluR1, and the G protein subunit, alphas. All of the in-frame GFP insertions produced a fluorescent protein, consistent with the idea that GFP will fold and form a fluorophore when inserted into virtually any domain of another protein. Some of the proteins retained their signaling function, and the random nature of the transposition process revealed permissive sites for insertion that would not have been predicted on the basis of structural or functional models of how that protein works.
This technique should greatly speed the discovery of functional fusion proteins, genetically encodable sensors, and optimized fluorescence resonance energy transfer pairs.
水母绿色荧光蛋白(GFP)可插入另一种蛋白质中间以产生功能性荧光融合蛋白。然而,找到允许插入的位点可能很困难。在此,我们描述一种基于转座子的方法,用于快速创建GFP融合蛋白文库。
我们在谷氨酸受体亚基GluR1和G蛋白亚基α上测试了我们的方法。所有读框内的GFP插入都产生了荧光蛋白,这与以下观点一致:当GFP插入到另一种蛋白质的几乎任何结构域时,它都会折叠并形成荧光团。一些蛋白质保留了它们的信号传导功能,并且转座过程的随机性揭示了基于该蛋白质工作方式的结构或功能模型无法预测的允许插入位点。
这项技术应能极大地加速功能性融合蛋白、基因编码传感器和优化的荧光共振能量转移对的发现。