Wagner Markus, Ruzsics Zsolt, Koszinowski Ulrich H
Max von Pettenkofer Institute, Department of Virology, Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany.
Trends Microbiol. 2002 Jul;10(7):318-24. doi: 10.1016/s0966-842x(02)02394-6.
The genetic analysis of the large and complex herpesviruses has been a constant challenge to herpesvirologists. Elegant methods have been developed to produce mutants in infected cells that rely on the cellular recombination machinery. Bacterial artificial chromosomes (BACs), single copy F-factor-based plasmid vectors of intermediate insert capacity, have now enabled the cloning of complete herpesvirus genomes. Infectious virus genomes can be shuttled between Escherichia coli and eukaryotic cells. Herpesvirus BAC DNA engineering in E. coli by homologous recombination requires neither restriction sites nor cloning steps and allows the introduction of a wide variety of DNA modifications. Such E. coli-based technology has provided a safe, fast and effective approach to the systematic mining of the information stored in herpesvirus genomes as a result of their intimate co-evolution with their specific hosts for millions of years. Use of this technique could lead to new developments in clinical virology and basic virology research, and increase the usage of viral genomes as investigative tools and vectors.
对大型复杂疱疹病毒进行基因分析一直是疱疹病毒学家面临的一项持续挑战。已经开发出了一些精妙的方法来在依赖细胞重组机制的受感染细胞中产生突变体。细菌人工染色体(BACs),即中等插入能力的基于单拷贝F因子的质粒载体,现已能够克隆完整的疱疹病毒基因组。传染性病毒基因组可以在大肠杆菌和真核细胞之间穿梭。通过同源重组在大肠杆菌中进行疱疹病毒BAC DNA工程既不需要限制酶切位点,也不需要克隆步骤,并且允许引入各种各样的DNA修饰。这种基于大肠杆菌的技术提供了一种安全、快速且有效的方法,用于系统挖掘疱疹病毒基因组中存储的信息,这是由于它们与特定宿主数百万年来密切的共同进化所致。使用这项技术可能会在临床病毒学和基础病毒学研究方面带来新进展,并增加病毒基因组作为研究工具和载体的使用。