Suppr超能文献

一种应用于估计生育时间表的贝叶斯空间可变参数模型。

A Bayesian space varying parameter model applied to estimating fertility schedules.

作者信息

Assunção Renato M, Potter Joseph E, Cavenaghi Suzana M

机构信息

UFMG, Departamento de Estatística, Caixa Postal 702, Belo Horizonte MG, 30161-970, Brazil.

出版信息

Stat Med. 2002 Jul 30;21(14):2057-75. doi: 10.1002/sim.1153.

Abstract

We propose a spatial generalized linear model (GLM) to analyse the vital rates for small areas. In each small area, we have a response vector and covariates to explain its variability. The statistical methodology is based on a spatial Bayesian approach and it allows the covariates' parameters of the generalized linear model to vary smoothly on space. Hence, the effect of a covariate on the response varies depending on the random variables measurement location. Our model is an extension of disease mapping models allowing the space-covariate interaction to be modelled in a natural way and giving space a position of intrinsic interest. We introduce the model in the context of fertility curve estimation. In each small area, we have a curve describing the variation of fertility rates by age modelled by Coale's fertility model, which implies a GLM in each area. A simulation shows the advantages of our approach. In addition, the paper applies the procedure to census data used to study the diffusion of low fertility behaviour in Brazil.

摘要

我们提出一种空间广义线性模型(GLM)来分析小区域的生命率。在每个小区域中,我们有一个响应向量和协变量来解释其变异性。统计方法基于空间贝叶斯方法,它允许广义线性模型的协变量参数在空间上平滑变化。因此,协变量对响应的影响取决于随机变量的测量位置。我们的模型是疾病映射模型的扩展,允许以自然的方式对空间 - 协变量相互作用进行建模,并赋予空间内在的重要地位。我们在生育率曲线估计的背景下引入该模型。在每个小区域中,我们有一条曲线描述按年龄划分的生育率变化,该曲线由科尔的生育率模型建模,这意味着每个区域都有一个GLM。模拟显示了我们方法的优势。此外,本文将该程序应用于用于研究巴西低生育率行为扩散的人口普查数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验