Suppr超能文献

具有时空相关协变量的贝叶斯潜在结构模型。

Bayesian latent structure models with space-time-dependent covariates.

作者信息

Cai Bo, Lawson Andrew B, Hossain Md Monir, Choi Jungsoon

机构信息

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC.

出版信息

Stat Modelling. 2012 Apr 1;12(2):145-164. doi: 10.1177/1471082X1001200202.

Abstract

Spatial-temporal data requires flexible regression models which can model the dependence of responses on space- and time-dependent covariates. In this paper, we describe a semiparametric space-time model from a Bayesian perspective. Nonlinear time dependence of covariates and the interactions among the covariates are constructed by local linear and piecewise linear models, allowing for more flexible orientation and position of the covariate plane by using time-varying basis functions. Space-varying covariate linkage coefficients are also incorporated to allow for the variation of space structures across the geographical location. The formulation accommodates uncertainty in the number and locations of the piecewise basis functions to characterize the global effects, spatially structured and unstructured random effects in relation to covariates. The proposed approach relies on variable selection-type mixture priors for uncertainty in the number and locations of basis functions and in the space-varying linkage coefficients. A simulation example is presented to evaluate the performance of the proposed approach with the competing models. A real data example is used for illustration.

摘要

时空数据需要灵活的回归模型,这类模型能够对响应变量依赖于空间和时间相关协变量的情况进行建模。在本文中,我们从贝叶斯视角描述了一个半参数时空模型。协变量的非线性时间依赖性以及协变量之间的相互作用通过局部线性和分段线性模型构建,利用时变基函数允许协变量平面有更灵活的方向和位置。还纳入了空间变化的协变量链接系数,以考虑地理区域内空间结构的变化。该公式考虑了分段基函数数量和位置的不确定性,以表征全局效应、与协变量相关的空间结构化和非结构化随机效应。所提出的方法依赖于变量选择型混合先验,用于处理基函数数量和位置以及空间变化链接系数的不确定性。给出了一个模拟示例,以评估所提出方法与竞争模型相比的性能。使用一个实际数据示例进行说明。

相似文献

1
Bayesian latent structure models with space-time-dependent covariates.
Stat Modelling. 2012 Apr 1;12(2):145-164. doi: 10.1177/1471082X1001200202.
2
Bayesian semiparametric model with spatially-temporally varying coefficients selection.
Stat Med. 2013 Sep 20;32(21):3670-85. doi: 10.1002/sim.5789. Epub 2013 Mar 25.
3
Bayesian spatially dependent variable selection for small area health modeling.
Stat Methods Med Res. 2018 Jan;27(1):234-249. doi: 10.1177/0962280215627184. Epub 2016 Jun 16.
5
A Bayesian two-stage spatially dependent variable selection model for space-time health data.
Stat Methods Med Res. 2019 Sep;28(9):2570-2582. doi: 10.1177/0962280218767980. Epub 2018 Apr 11.
6
A Bayesian multistage spatio-temporally dependent model for spatial clustering and variable selection.
Stat Med. 2023 Nov 20;42(26):4794-4823. doi: 10.1002/sim.9889. Epub 2023 Aug 31.
7
Structured additive regression for categorical space-time data: a mixed model approach.
Biometrics. 2006 Mar;62(1):109-18. doi: 10.1111/j.1541-0420.2005.00392.x.
9
Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects.
Bayesian Anal. 2016 Jun;11(2):381-402. doi: 10.1214/15-BA954. Epub 2015 May 14.
10
Bayesian adaptive group lasso with semiparametric hidden Markov models.
Stat Med. 2019 Apr 30;38(9):1634-1650. doi: 10.1002/sim.8051. Epub 2018 Nov 28.

引用本文的文献

1
An Introductory Framework for Choosing Spatiotemporal Analytical Tools in Population-Level Eco-Epidemiological Research.
Front Vet Sci. 2020 Jul 7;7:339. doi: 10.3389/fvets.2020.00339. eCollection 2020.
2
Bayesian semiparametric model with spatially-temporally varying coefficients selection.
Stat Med. 2013 Sep 20;32(21):3670-85. doi: 10.1002/sim.5789. Epub 2013 Mar 25.

本文引用的文献

2
Penalized loss functions for Bayesian model comparison.
Biostatistics. 2008 Jul;9(3):523-39. doi: 10.1093/biostatistics/kxm049. Epub 2008 Jan 21.
3
Bayesian adaptive regression splines for hierarchical data.
Biometrics. 2007 Sep;63(3):724-32. doi: 10.1111/j.1541-0420.2007.00761.x. Epub 2007 Apr 2.
5
Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK).
Stat Methods Med Res. 2006 Aug;15(4):385-407. doi: 10.1191/0962280206sm458oa.
6
Structured additive regression for categorical space-time data: a mixed model approach.
Biometrics. 2006 Mar;62(1):109-18. doi: 10.1111/j.1541-0420.2005.00392.x.
8
Bayesian extrapolation of space-time trends in cancer registry data.
Biometrics. 2004 Dec;60(4):1034-42. doi: 10.1111/j.0006-341X.2004.00259.x.
9
A Bayesian space varying parameter model applied to estimating fertility schedules.
Stat Med. 2002 Jul 30;21(14):2057-75. doi: 10.1002/sim.1153.
10
Bayesian modelling of inseparable space-time variation in disease risk.
Stat Med. 2000;19(17-18):2555-67. doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验