Cai Bo, Lawson Andrew B, Hossain Md Monir, Choi Jungsoon
Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC.
Stat Modelling. 2012 Apr 1;12(2):145-164. doi: 10.1177/1471082X1001200202.
Spatial-temporal data requires flexible regression models which can model the dependence of responses on space- and time-dependent covariates. In this paper, we describe a semiparametric space-time model from a Bayesian perspective. Nonlinear time dependence of covariates and the interactions among the covariates are constructed by local linear and piecewise linear models, allowing for more flexible orientation and position of the covariate plane by using time-varying basis functions. Space-varying covariate linkage coefficients are also incorporated to allow for the variation of space structures across the geographical location. The formulation accommodates uncertainty in the number and locations of the piecewise basis functions to characterize the global effects, spatially structured and unstructured random effects in relation to covariates. The proposed approach relies on variable selection-type mixture priors for uncertainty in the number and locations of basis functions and in the space-varying linkage coefficients. A simulation example is presented to evaluate the performance of the proposed approach with the competing models. A real data example is used for illustration.
时空数据需要灵活的回归模型,这类模型能够对响应变量依赖于空间和时间相关协变量的情况进行建模。在本文中,我们从贝叶斯视角描述了一个半参数时空模型。协变量的非线性时间依赖性以及协变量之间的相互作用通过局部线性和分段线性模型构建,利用时变基函数允许协变量平面有更灵活的方向和位置。还纳入了空间变化的协变量链接系数,以考虑地理区域内空间结构的变化。该公式考虑了分段基函数数量和位置的不确定性,以表征全局效应、与协变量相关的空间结构化和非结构化随机效应。所提出的方法依赖于变量选择型混合先验,用于处理基函数数量和位置以及空间变化链接系数的不确定性。给出了一个模拟示例,以评估所提出方法与竞争模型相比的性能。使用一个实际数据示例进行说明。