Suppr超能文献

利用动脉自旋标记技术提高人脑血流灌注测量的准确性:考虑毛细血管水通透性

Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability.

作者信息

Parkes Laura M, Tofts Paul S

机构信息

NMR Research Unit, Institute of Neurology, University College London, Queen Square, London, UK.

出版信息

Magn Reson Med. 2002 Jul;48(1):27-41. doi: 10.1002/mrm.10180.

Abstract

A two-compartment exchange model for perfusion quantification using arterial spin labeling (ASL) is presented, which corrects for the assumption that the capillary wall has infinite permeability to water. The model incorporates an extravascular and a blood compartment with the permeability surface area product (PS) of the capillary wall characterizing the passage of water between the compartments. The new model predicts that labeled spins spend longer in the blood compartment before exchange. This makes an accurate blood T(1) measurement crucial for perfusion quantification; conversely, the tissue T(1) measurement is less important and may be unnecessary for pulsed ASL experiments. The model gives up to 62% reduction in perfusion estimate for human imaging at 1.5T compared to the single compartment model. For typical human perfusion rates at 1.5T it can be assumed that the venous outflow signal is negligible. This simplifies the solution, introducing only one more parameter than the single compartment model, PS/v(bw), where v(bw) is the fractional blood water volume per unit volume of tissue. The simplified model produces an improved fit to continuous ASL data collected at varying delay time. The fitting yields reasonable values for perfusion and PS/v(bw).

摘要

提出了一种用于动脉自旋标记(ASL)灌注定量的双室交换模型,该模型纠正了毛细血管壁对水具有无限渗透性这一假设。该模型包含一个血管外室和一个血液室,毛细血管壁的通透表面积乘积(PS)表征了水在各室之间的通过情况。新模型预测,标记自旋在交换前在血液室中停留的时间更长。这使得准确测量血液T(1)对于灌注定量至关重要;相反,组织T(1)测量不太重要,对于脉冲ASL实验可能也不必要。与单室模型相比,该模型在1.5T人体成像中灌注估计值最多可降低62%。对于1.5T时典型的人体灌注率,可以假设静脉流出信号可忽略不计。这简化了解决方案,比单室模型仅多引入一个参数PS/v(bw),其中v(bw)是单位组织体积中的血液水分数体积。简化模型对在不同延迟时间收集到的连续ASL数据拟合效果更好。拟合得到了灌注和PS/v(bw)的合理值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验