Pierrot-Deseilligny Charles, Müri René M, Rivaud-Pechoux Sophie, Gaymard Bertrand, Ploner Christoph J
Service de Neurologie 1, Assistance Publique-Hôpitaux de Paris and Institut National de la Santé et de la Recherche Médicale 289, Hôpital de la Salpêtrière, Paris, France.
Ann Neurol. 2002 Jul;52(1):10-9. doi: 10.1002/ana.10273.
We review current knowledge of the cortical control of spatial memory, studied using visuooculomotor paradigms. Spatial memory is an essential cognitive process that can be involved in preparing motor responses. Our knowledge of spatial memory in humans recently has progressed thanks to the use of ocular saccades as a convenient model of motor behavior. Accuracy of memory-guided saccades, made to the remembered locations of visual targets, is a reflection of spatial memory. For the performance of memory-guided saccades with brief delays (up to 15-20 seconds), that is, involving short-term spatial memory, lesion studies have shown that the posterior parietal cortex, the dorsolateral prefrontal cortex, and the frontal eye field play significant roles. Studies of memory-guided saccades using transcranial magnetic stimulation have suggested that the right posterior parietal cortex is involved at the initial stage (<300 milliseconds) of visuospatial integration, whereas the dorsolateral prefrontal cortex in both hemispheres controls the following phase of short-term memorization, the frontal eye field mainly serving to trigger saccades. The new concept of a medium-term spatial memory has emerged from a behavioral study of memory-guided saccades in normal subjects, showing a paradoxical spontaneous improvement of spatial memory after delays of approximately 20 seconds. Lesion studies have shown that the parahippocampal cortex could specifically control this medium-term spatial memory. Last, different experimental and clinical arguments suggest that, after a few minutes, the hippocampal formation finally takes over the control of spatial memory for long-term spatial memorization. Therefore, spatial memory involved in the memorization of visual items could be successively controlled by the dorsolateral prefrontal cortex (short-term spatial memory), the parahippocampal cortex (medium-term spatial memory), and the hippocampal formation (long-term spatial memory), depending on specific periods of times. The applicability of this simple visuooculomotor model of spatial memory to other types of stimuli and general motoricity has yet to be confirmed.
我们回顾了利用视觉眼动范式对空间记忆的皮质控制的现有知识。空间记忆是一种基本的认知过程,可参与运动反应的准备。由于将眼跳作为运动行为的便捷模型,我们对人类空间记忆的认识最近取得了进展。向视觉目标的记忆位置做出的记忆引导性眼跳的准确性是空间记忆的一种反映。对于短暂延迟(长达15 - 20秒)的记忆引导性眼跳的表现,即涉及短期空间记忆,损伤研究表明后顶叶皮质、背外侧前额叶皮质和额叶眼区发挥着重要作用。使用经颅磁刺激对记忆引导性眼跳的研究表明,右侧后顶叶皮质在视觉空间整合的初始阶段(<300毫秒)发挥作用,而双侧背外侧前额叶皮质控制短期记忆的后续阶段,额叶眼区主要用于触发眼跳。中期空间记忆的新概念源自对正常受试者记忆引导性眼跳的行为研究,该研究表明在大约20秒的延迟后空间记忆会出现自相矛盾的自发改善。损伤研究表明海马旁回皮质可特异性控制这种中期空间记忆。最后,不同的实验和临床证据表明,几分钟后,海马结构最终接管对空间记忆的控制以进行长期空间记忆。因此,参与视觉项目记忆的空间记忆可能会依次由背外侧前额叶皮质(短期空间记忆)、海马旁回皮质(中期空间记忆)和海马结构(长期空间记忆)控制,具体取决于特定的时间段。这种简单的空间记忆视觉眼动模型对其他类型刺激和一般运动能力的适用性尚未得到证实。