Wade Nathan, Evans Chris, Jo Sung-Chan, Cooks R Graham
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
J Mass Spectrom. 2002 Jun;37(6):591-602. doi: 10.1002/jms.317.
Using a multi-sector ion-surface scattering mass spectrometer, reagent ions of the general form SiR(3) (+) were mass and energy selected and then made to collide with a hydroxy-terminated self-assembled monolayer (HO-SAM) surface at energies of approximately 15 eV. These ion-surface interactions result in covalent transformation of the terminal hydroxy groups at the surface into the corresponding silyl ethers due to Si--O bond formation. The modified surface was characterized in situ by chemical sputtering, a low-energy ion-surface scattering experiment. These data indicate that the ion-surface reactions have high yields (i.e. surface reactants converted to products). Surface reactions with Si(OCH(3))(3) (+), followed by chemical sputtering using CF(3) (+), yielded the reagent ion, Si(OCH(3))(3) (+), and several of its fragments. Other sputtered ions, namely SiH(OCH(3))(2)OH(2) (+) and SiH(2)(OCH(3))OH(2) (+), contain the newly formed Si--O bond and provide direct evidence for the covalent modification reaction. Chemical sputtering of modified surfaces, performed using CF(3) (+), was evaluated over a range of collision energies. The results showed that the energy transferred to the sputtered ions, as measured by their extent of fragmentation in the scattered ion mass spectra, was essentially independent of the collision energy of the projectile, thus pointing to the occurrence of reactive sputtering.A set of silyl cations, including SiBr(3) (+), Si(C(2)H(3))(3) (+) and Si(CH(3))(2)F(+), were similarly used to modify the HO-SAM surface at low collision energies. A reaction mechanism consisting of direct electrophilic attack by the cationic projectiles is supported by evidence of increased reactivity for these reagent ions with increases in the calculated positive charge at the electron-deficient silicon atom of each of these cations. In a sequential set of reactions, 12 eV deuterated trimethylsilyl cations, Si(CD(3))(3) (+), were used first as the reagent ions to modify covalently a HO-SAM surface. Subsequently, 70 eV SiCl(3) (+) ions were used to modify the surface further. In addition to yielding sputtered ions of the modified surface, SiCl(3) (+) reacted with both modified and unmodified groups on the surface, giving rise not only to such scattered product ions as SiCl(2)OH(+) and SiCl(2)H(+), but also to SiCl(2)CD(3) (+) and SiCl(2)D(+). This result demonstrates that selective, multi-step reactions can be performed at a surface through low-energy ionic collisions. Such processes are potentially useful for the construction of novel surfaces from a monolayer substrate and for chemical patterning of surfaces with functional groups.
使用多扇区离子 - 表面散射质谱仪,对通式为SiR(3) (+)的试剂离子进行质量和能量选择,然后使其在约15 eV的能量下与羟基封端的自组装单分子层(HO - SAM)表面碰撞。这些离子 - 表面相互作用由于形成Si - O键,导致表面的末端羟基发生共价转化,生成相应的硅醚。通过化学溅射这一低能量离子 - 表面散射实验对改性表面进行原位表征。这些数据表明离子 - 表面反应具有高产率(即表面反应物转化为产物)。用Si(OCH(3))(3) (+)进行表面反应,随后用CF(3) (+)进行化学溅射,产生了试剂离子Si(OCH(3))(3) (+)及其几个碎片。其他溅射离子,即SiH(OCH(3))(2)OH(2) (+)和SiH(2)(OCH(3))OH(2) (+),含有新形成的Si - O键,为共价改性反应提供了直接证据。在一系列碰撞能量范围内评估了使用CF(3) (+)对改性表面进行的化学溅射。结果表明,通过散射离子质谱图中溅射离子的碎片化程度测量,转移到溅射离子上的能量基本上与入射粒子的碰撞能量无关,从而表明发生了反应性溅射。一组甲硅烷基阳离子,包括SiBr(3) (+)、Si(C(2)H(3))(3) (+)和Si(CH(3))(2)F(+),同样用于在低碰撞能量下改性HO - SAM表面。由阳离子入射粒子直接亲电攻击组成的反应机制得到了支持,证据是随着这些阳离子中每个缺电子硅原子上计算出的正电荷增加,这些试剂离子的反应性增强。在一系列连续反应中,首先使用12 eV的氘代三甲基甲硅烷基阳离子Si(CD(3))(3) (+)作为试剂离子对HO - SAM表面进行共价改性。随后,使用70 eV的SiCl(3) (+)离子进一步改性表面。除了产生改性表面的溅射离子外,SiCl(3) (+)还与表面上的改性和未改性基团反应,不仅产生了诸如SiCl(2)OH(+)和SiCl(2)H(+)等散射产物离子,还产生了SiCl(2)CD(3) (+)和SiCl(2)D(+)。这一结果表明,通过低能量离子碰撞可以在表面进行选择性的多步反应。此类过程对于从单分子层底物构建新型表面以及对具有官能团的表面进行化学图案化可能是有用的。