Suppr超能文献

燕麦光敏色素a富含丝氨酸的N端结构域有助于调节光反应和光感受器的亚核定位。

The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor.

作者信息

Casal Jorge J, Davis Seth J, Kirchenbauer Daniel, Viczian Andras, Yanovsky Marcelo J, Clough Richard C, Kircher Stefan, Jordan-Beebe Emily T, Schäfer Eberhard, Nagy Ferenc, Vierstra Richard D

机构信息

IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.

出版信息

Plant Physiol. 2002 Jul;129(3):1127-37. doi: 10.1104/pp.010977.

Abstract

Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Delta6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Delta6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Delta6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Delta6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Delta6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts.

摘要

光敏色素(phy)A介导植物中的两种不同光生物学反应:极低光通量反应(VLFR),可被极低光通量的短脉冲光饱和;以及高辐照度反应(HIR),这需要用较高光通量的远红光(FR)进行长时间照射。为了研究VLFR和HIR是否涉及phyA分子内的不同结构域,对表达燕麦(Avena sativa)phyA全长(FL)和各种缺失突变体的转基因烟草(Nicotiana tabacum cv Xanthi)和拟南芥幼苗的光敏感性进行了检测。尽管大多数突变体要么部分有活性,要么无活性,但对于缺失氨基酸6至12之间富含丝氨酸结构域的Delta6 - 12 phyA突变体,观察到了强烈的差异效应。Delta6 - 12 phyA在拟南芥下胚轴生长和子叶展开的VLFR中与FL phyA一样有活性,在烟草下胚轴生长和子叶展开的VLFR中以及在拟南芥白光下后续绿化的VLFR阻断中表现出超活性。相比之下,Delta6 - 12 phyA在两个物种中均对HIR表现出显性负抑制作用。在用FR照射的拟南芥下胚轴细胞中,phyA:绿色荧光蛋白(GFP)和Delta6 - 12 phyA:GFP融合蛋白定位于细胞核并聚集成焦点。与在相同总光通量下每小时提供FR的情况相比,连续提供FR时,FL phyA:GFP中具有丰富焦点的细胞核比例增加,而在每小时FR处理下,Delta6 - 12 phyA突变体也有此效果。我们提出,phyA的N端富含丝氨酸结构域在不同细胞环境中通过VLFR或HIR途径参与引导下游信号传导。

相似文献

2
SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
Planta. 2002 Sep;215(5):745-53. doi: 10.1007/s00425-002-0801-x. Epub 2002 Jun 14.
6
Functional and biochemical analysis of the N-terminal domain of phytochrome A.
J Biol Chem. 2006 Nov 10;281(45):34421-9. doi: 10.1074/jbc.M603538200. Epub 2006 Sep 11.
7
CP3 is involved in negative regulation of phytochrome A signalling in Arabidopsis.
Planta. 2002 Aug;215(4):557-64. doi: 10.1007/s00425-002-0784-7. Epub 2002 May 21.
8
A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
Mol Plant. 2008 Jan;1(1):84-102. doi: 10.1093/mp/ssm010. Epub 2007 Oct 31.
9
Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana.
Plant J. 1999 Jun;18(5):499-507. doi: 10.1046/j.1365-313x.1999.00475.x.
10
Light-regulated nuclear import and degradation of Arabidopsis phytochrome-A N-terminal fragments.
Plant Cell Physiol. 2011 Feb;52(2):361-72. doi: 10.1093/pcp/pcq194. Epub 2010 Dec 17.

引用本文的文献

2
Phytochrome A in plants comprises two structurally and functionally distinct populations - water-soluble phyA' and amphiphilic phyA″.
Biophys Rev. 2022 Jul 1;14(4):905-921. doi: 10.1007/s12551-022-00974-2. eCollection 2022 Aug.
3
From the archives: Where the light goes; flower color, chloroplast transport, and phytochrome A.
Plant Cell. 2022 Jul 4;34(7):2570-2571. doi: 10.1093/plcell/koac113.
4
Conformational Change of Tetratricopeptide Repeats Region Triggers Activation of Phytochrome-Associated Protein Phosphatase 5.
Front Plant Sci. 2021 Oct 14;12:733069. doi: 10.3389/fpls.2021.733069. eCollection 2021.
6
Out of the Dark and Into the Light: A New View of Phytochrome Photobodies.
Front Plant Sci. 2021 Aug 31;12:732947. doi: 10.3389/fpls.2021.732947. eCollection 2021.
7
Functional and Predictive Structural Characterization of WRINKLED2, A Unique Oil Biosynthesis Regulator in Avocado.
Front Plant Sci. 2021 Jun 8;12:648494. doi: 10.3389/fpls.2021.648494. eCollection 2021.
8
Plant Phytochromes and their Phosphorylation.
Int J Mol Sci. 2019 Jul 13;20(14):3450. doi: 10.3390/ijms20143450.
9
Hinge region of phyA plays an important role in regulating phyA function.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11864-E11873. doi: 10.1073/pnas.1813162115. Epub 2018 Nov 26.
10
Genome-wide analysis reveals the evolution and structural features of WRINKLED1 in plants.
Mol Genet Genomics. 2019 Apr;294(2):329-341. doi: 10.1007/s00438-018-1512-8. Epub 2018 Nov 16.

本文引用的文献

2
Cryptochrome, phytochrome, and anthocyanin production.
Plant Physiol. 1991 Aug;96(4):1079-85. doi: 10.1104/pp.96.4.1079.
4
Formulae for determination of chlorophyllous pigments extracted with n,n-dimethylformamide.
Plant Physiol. 1982 Jun;69(6):1376-81. doi: 10.1104/pp.69.6.1376.
5
The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B.
Plant Cell. 1991 Dec;3(12):1263-1274. doi: 10.1105/tpc.3.12.1263.
10
LAF1, a MYB transcription activator for phytochrome A signaling.
Genes Dev. 2001 Oct 1;15(19):2613-25. doi: 10.1101/gad.915001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验