So J W, Wu J, Zou X
Department of Mathematical Sciences, University of Alberta, Edmonton, Canada.
J Math Biol. 2001 Jul;43(1):37-51. doi: 10.1007/s002850100081.
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal (over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.
我们从年龄结构模型推导出一个延迟微分方程组,以描述空间扩散(在两个斑块之间)和时间延迟(由成熟期引起)之间的相互作用。我们的模型分析表明,改变未成熟个体的死亡率可以改变均匀平衡态的行为,导致围绕中间平衡态的瞬态振荡,以及在最大平衡态附近出现复杂的动力学(以可能稳定的同步周期振荡和不稳定的锁相振荡共存的形式)。