Mchich Rachid, Auger Pierre, Poggiale Jean-Christophe
Ecole Nationale de Commerce et de Gestion, Tanger, Morocco.
Math Biosci. 2007 Apr;206(2):343-56. doi: 10.1016/j.mbs.2005.11.005. Epub 2006 Feb 7.
This work presents a predator-prey Lotka-Volterra model in a two patch environment. The model is a set of four ordinary differential equations that govern the prey and predator population densities on each patch. Predators disperse with constant migration rates, while prey dispersal is predator density-dependent. When the predator density is large, the dispersal of prey is more likely to occur. We assume that prey and predator dispersal is faster than the local predator-prey interaction on each patch. Thus, we take advantage of two time scales in order to reduce the complete model to a system of two equations governing the total prey and predator densities. The stability analysis of the aggregated model shows that a unique strictly positive equilibrium exists. This equilibrium may be stable or unstable. A Hopf bifurcation may occur, leading the equilibrium to be a centre. If the two patches are similar, the predator density dependent dispersal of prey has a stabilizing effect on the predator-prey system.
这项工作提出了一个在双斑块环境中的捕食者 - 猎物洛特卡 - 沃尔泰拉模型。该模型是一组四个常微分方程,用于控制每个斑块上猎物和捕食者的种群密度。捕食者以恒定的迁移率扩散,而猎物的扩散取决于捕食者的密度。当捕食者密度较大时,猎物更有可能扩散。我们假设猎物和捕食者的扩散速度比每个斑块上局部的捕食者 - 猎物相互作用速度快。因此,我们利用两个时间尺度,以便将完整模型简化为一个由两个方程组成的系统,该系统控制猎物和捕食者的总密度。聚集模型的稳定性分析表明存在唯一的严格正平衡点。这个平衡点可能是稳定的或不稳定的。可能会发生霍普夫分岔,导致平衡点成为一个中心。如果两个斑块相似,猎物的捕食者密度依赖性扩散对捕食者 - 猎物系统具有稳定作用。