Suppr超能文献

血红蛋白C的分子间相互作用、成核作用及结晶热力学

Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C.

作者信息

Vekilov Peter G, Feeling-Taylor Angela R, Petsev Dimiter N, Galkin Oleg, Nagel Ronald L, Hirsch Rhoda Elison

机构信息

Department of Chemical Engineering, University of Houston, Houston, Texas 77204, USA.

出版信息

Biophys J. 2002 Aug;83(2):1147-56. doi: 10.1016/S0006-3495(02)75238-7.

Abstract

The mutated hemoglobin HbC (beta 6 Glu-->Lys), in the oxygenated (R) liganded state, forms crystals inside red blood cells of patients with CC and SC diseases. Static and dynamic light scattering characterization of the interactions between the R-state (CO) HbC, HbA, and HbS molecules in low-ionic-strength solutions showed that electrostatics is unimportant and that the interactions are dominated by the specific binding of solutions' ions to the proteins. Microscopic observations and determinations of the nucleation statistics showed that the crystals of HbC nucleate and grow by the attachment of native molecules from the solution and that concurrent amorphous phases, spherulites, and microfibers are not building blocks for the crystal. Using a novel miniaturized light-scintillation technique, we quantified a strong retrograde solubility dependence on temperature. Thermodynamic analyses of HbC crystallization yielded a high positive enthalpy of 155 kJ mol(-1), i.e., the specific interactions favor HbC molecules in the solute state. Then, HbC crystallization is only possible because of the huge entropy gain of 610 J mol(-1) K(-1), likely stemming from the release of up to 10 water molecules per protein intermolecular contact-hydrophobic interaction. Thus, the higher crystallization propensity of R-state HbC is attributable to increased hydrophobicity resulting from the conformational changes that accompany the HbC beta 6 mutation.

摘要

突变的血红蛋白HbC(β6谷氨酸→赖氨酸)在氧合(R)配体状态下,会在患有CC和SC疾病患者的红细胞内形成晶体。对低离子强度溶液中R态(CO)HbC、HbA和HbS分子之间相互作用的静态和动态光散射表征表明,静电作用并不重要,且相互作用主要由溶液离子与蛋白质的特异性结合主导。显微镜观察和成核统计测定表明,HbC晶体通过溶液中天然分子的附着而成核并生长,同时非晶相、球晶和微纤维并非晶体的构建单元。使用一种新型的小型化光闪烁技术,我们量化了溶解度对温度的强烈逆行依赖性。对HbC结晶的热力学分析得出了155 kJ mol⁻¹的高正焓,即特定相互作用有利于溶质状态下的HbC分子。那么,HbC结晶之所以可能,只是因为有610 J mol⁻¹ K⁻¹的巨大熵增,这可能源于每个蛋白质分子间接触 - 疏水相互作用最多释放10个水分子。因此,R态HbC较高的结晶倾向归因于伴随HbC β6突变的构象变化导致的疏水性增加。

相似文献

1
Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C.
Biophys J. 2002 Aug;83(2):1147-56. doi: 10.1016/S0006-3495(02)75238-7.
2
Solvent entropy contribution to the free energy of protein crystallization.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1611-6. doi: 10.1107/s0907444902014312. Epub 2002 Sep 26.
3
Differential pathways in oxy and deoxy HbC aggregation/crystallization.
Proteins. 2001 Jan 1;42(1):99-107. doi: 10.1002/1097-0134(20010101)42:1<99::aid-prot100>3.0.co;2-r.
5
Flexibility and nucleation in sickle hemoglobin.
J Mol Biol. 2001 Dec 7;314(4):851-61. doi: 10.1006/jmbi.2001.5163.
6
Phase separation and crystallization of hemoglobin C in transgenic mouse and human erythrocytes.
Biophys J. 2008 Oct;95(8):4025-33. doi: 10.1529/biophysj.107.127324. Epub 2008 Jul 11.
7
Nucleation and crystal growth of hemoglobins. The case of HbC.
Methods Mol Med. 2003;82:155-76. doi: 10.1385/1-59259-373-9:155.
8
9
Liquid-liquid phase separation in hemoglobins: distinct aggregation mechanisms of the beta6 mutants.
Biophys J. 2004 Mar;86(3):1702-12. doi: 10.1016/S0006-3495(04)74239-3.

引用本文的文献

1
A multiscale time-resolved study of the nano- to millisecond structural dynamics during protein crystallization.
J Appl Crystallogr. 2025 May 29;58(Pt 3):845-858. doi: 10.1107/S160057672500353X. eCollection 2025 Jun 1.
2
The role of nucleation in sickle cell pathophysiology: opportunities for innovative treatments.
Ann Med Surg (Lond). 2024 Nov 4;87(3):1341-1350. doi: 10.1097/MS9.0000000000002705. eCollection 2025 Mar.
3
Agglomeration: when folded proteins clump together.
Biophys Rev. 2023 Dec 15;15(6):1987-2003. doi: 10.1007/s12551-023-01172-4. eCollection 2023 Dec.
4
Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering.
Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5514-5531. doi: 10.1002/anie.201806092. Epub 2019 Feb 20.
6
Nucleation precursors in protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Mar;70(Pt 3):271-82. doi: 10.1107/S2053230X14002386. Epub 2014 Feb 20.
8
Entropy-driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6525-30. doi: 10.1073/pnas.1118005109. Epub 2012 Apr 9.
10
Phase separation and crystallization of hemoglobin C in transgenic mouse and human erythrocytes.
Biophys J. 2008 Oct;95(8):4025-33. doi: 10.1529/biophysj.107.127324. Epub 2008 Jul 11.

本文引用的文献

1
The entropic cost of bound water in crystals and biomolecules.
Science. 1994 Apr 29;264(5159):670. doi: 10.1126/science.264.5159.670.
2
Light-scattering investigations of nucleation processes and kinetics of crystallization in macromolecular systems.
Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):385-95. doi: 10.1107/S0907444993013319.
3
Allelomorphism and the chemical differences of the human haemoglobins A, S and C.
Nature. 1958 Apr 12;181(4615):1062-3. doi: 10.1038/1811062a0.
4
Solubilities of naturally occurring mixtures of human hemoglobin.
Arch Biochem Biophys. 1953 Nov;47(1):148-59. doi: 10.1016/0003-9861(53)90444-5.
5
Differential pathways in oxy and deoxy HbC aggregation/crystallization.
Proteins. 2001 Jan 1;42(1):99-107. doi: 10.1002/1097-0134(20010101)42:1<99::aid-prot100>3.0.co;2-r.
7
Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin.
Phys Rev Lett. 2000 Feb 7;84(6):1339-42. doi: 10.1103/PhysRevLett.84.1339.
8
Molecular mechanisms of crystallization and defect formation.
Phys Rev Lett. 2000 Jul 10;85(2):353-6. doi: 10.1103/PhysRevLett.85.353.
9
Quasi-planar nucleus structure in apoferritin crystallization.
Nature. 2000 Aug 3;406(6795):494-7. doi: 10.1038/35020035.
10
Atomic force microscopy in the study of macromolecular crystal growth.
Annu Rev Biophys Biomol Struct. 2000;29:361-410. doi: 10.1146/annurev.biophys.29.1.361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验