Vekilov Peter G, Feeling-Taylor Angela R, Yau Siu Tung, Petsev Dimiter
Department of Chemical Engineering, University of Houston, Houston, TX 77204-4004, USA.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1611-6. doi: 10.1107/s0907444902014312. Epub 2002 Sep 26.
We show with three proteins that trapping and release of the water molecules upon crystallization is a determinant of the crystallization thermodynamics. With HbC, a strong retrograde solubility dependence on temperature yields a high positive enthalpy of 155 kJ mol(-1), i.e., crystallization is only possible because of the huge entropy gain of 610 J mol(-1) x K(-1), stemming from the release of up to 10 water molecules per protein intermolecular contact. With apoferritin, the enthalpy of crystallization is close to zero. The main component in the crystallization driving force is the entropy gain due to the release upon crystallization of two water molecules bound to one protein molecules in solution. With both proteins, the density of the growth sites imaged by AFM is in excellent agreement with a calculation using the crystallization free energy. With lysozyme, the entropy effect due to the restructuring of the water molecules is negative. This leads to higher solubility.
我们通过三种蛋白质表明,结晶过程中水分子的捕获和释放是结晶热力学的一个决定因素。对于HbC,其溶解度对温度有强烈的逆向依赖性,产生了155 kJ mol⁻¹的高正焓,即结晶之所以可能,是因为每个蛋白质分子间接触释放多达10个水分子,从而带来了610 J mol⁻¹×K⁻¹的巨大熵增。对于脱铁铁蛋白,结晶焓接近于零。结晶驱动力的主要成分是由于溶液中与一个蛋白质分子结合的两个水分子在结晶时释放而产生的熵增。对于这两种蛋白质,原子力显微镜成像的生长位点密度与使用结晶自由能的计算结果非常吻合。对于溶菌酶,水分子重组引起的熵效应是负的。这导致了更高的溶解度。