Altewischer E, van Exter M P, Woerdman J P
Leiden University, Huygens Laboratory, PO Box 9504, 2300 RA Leiden, The Netherlands.
Nature. 2002 Jul 18;418(6895):304-6. doi: 10.1038/nature00869.
The state of a two-particle system is said to be entangled when its quantum-mechanical wavefunction cannot be factorized into two single-particle wavefunctions. This leads to one of the strongest counter-intuitive features of quantum mechanics, namely non-locality. Experimental realization of quantum entanglement is relatively easy for photons; a starting photon can spontaneously split into a pair of entangled photons inside a nonlinear crystal. Here we investigate the effects of nanostructured metal optical elements on the properties of entangled photons. To this end, we place optically thick metal films perforated with a periodic array of subwavelength holes in the paths of the two entangled photons. Such arrays convert photons into surface-plasmon waves--optically excited compressive charge density waves--which tunnel through the holes before reradiating as photons at the far side. We address the question of whether the entanglement survives such a conversion process. Our coincidence counting measurements show that it does, so demonstrating that the surface plasmons have a true quantum nature. Focusing one of the photon beams on its array reduces the quality of the entanglement. The propagation of the surface plasmons makes the array effectively act as a 'which way' detector.
当两粒子系统的量子力学波函数不能分解为两个单粒子波函数时,该系统的状态就被称为纠缠态。这导致了量子力学中最违反直觉的特性之一,即非定域性。对于光子而言,量子纠缠的实验实现相对容易;一个初始光子可以在非线性晶体中自发地分裂为一对纠缠光子。在此,我们研究纳米结构金属光学元件对纠缠光子特性的影响。为此,我们在两个纠缠光子的路径中放置了带有周期性亚波长孔阵列的光学厚金属膜。这样的阵列将光子转换为表面等离子体波——光学激发的压缩电荷密度波——在远侧重新辐射为光子之前,这些波会穿过这些孔。我们探讨了纠缠在这样一个转换过程后是否依然存在的问题。我们的符合计数测量结果表明它确实存在,从而证明表面等离子体具有真正的量子特性。将其中一束光子束聚焦在其阵列上会降低纠缠的质量。表面等离子体的传播使该阵列有效地充当了一个“路径探测器”。