Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N, Zbinden H
Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland.
Nature. 2005 Sep 1;437(7055):116-20. doi: 10.1038/nature04009.
Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.
量子通信需要将量子态或量子信息比特(量子比特)从一个地方传输到另一个地方。从基本层面来看,这使得纠缠能够得以分布,并能在相当远的距离上展示量子非定域性。在应用背景下,量子密码学提供了一种可证明安全的方法,用于在远距离的通信方之间建立保密密钥。光子是量子通信中天然的飞行量子比特载体,而电信光纤的存在使得1310纳米和1550纳米的波长特别适合长距离传输。然而,编码在碱金属原子中的量子比特,其吸收和发射波长约为800纳米,已被考虑用于量子信息的存储和处理。因此,未来由电信信道和碱金属存储器组成的量子信息网络将需要接口,以实现这些有用波长之间的量子比特转移,同时保持量子相干性和纠缠。在此,我们报告了波长为1310纳米和710纳米的光子之间量子比特转移的演示。其机制是一个非线性上转换过程,成功概率大于5%。在成功实现量子比特转移的情况下,我们观察到710纳米光子与最初与1310纳米光子纠缠的1550纳米的第三个光子之间存在强烈的双光子干涉,尽管它们从未直接相互作用。相应的保真度高于98%。