Aguilar Guillermo, Díaz Sergio H, Lavernia Enrique J, Nelson J Stuart
Center for Biomedical Engineering, Beckman Laser Institute and Medical Clinic, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92697, USA.
Lasers Surg Med. 2002;31(1):27-35. doi: 10.1002/lsm.10076.
Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser treatment of port wine stain (PWS) birthmarks. Unfortunately, CSC may not provide the necessary protection for patients with high concentrations of epidermal melanin. The objectives of this study are to: (1) provide a definition of cooling efficiency (eta) based on the amount of heat removed per unit area of skin for a given cooling time; (2) using this definition, establish the eta of previously reported spray nozzles; (3) identify the maximum benefit expected in PWS laser therapy based solely on improvement of eta; and (4) study the feasibility of using multiple-intermittent cryogen spurts and laser pulses to improve PWS laser therapy.
STUDY DESIGN/MATERIALS AND METHODS: A theoretical definition to quantify eta is introduced. Subsequently, finite difference heat diffusion and Monte Carlo light distribution models are used to study the spatial and temporal temperature distributions in PWS skin considering: (1) the current approach to PWS laser therapy consisting of a single cryogen spurt followed by a single pulsed dye laser exposure (SCS-SLP approach); and (2) multiple cryogen spurts and laser pulses (MCS-MLP approach). At the same time, an Arrhenius-type kinetic model is used to compute the epidermal and PWS thermal damages (Omega(E) and Omega(PWS), respectively) for a high epidermal melanin concentration (20%), corresponding to skin types V-VI.
The eta corresponding to a wide range of heat transfer coefficients (h) is quantified. For reported CSC nozzle devices eta varies from 40 to 98%. Using the SCS-SLP approach, it is shown that even eta = 100% cannot prevent excessive Omega(E) for a skin types V-VI. In contrast, the MCS-MLP approach provides adequate epidermal protection while permitting PWS photocoagulation for the same skin types.
The new proposed definition allows to compute the cooling efficiency of CSC nozzle devices. Computer models have been developed and used to show that the SCS-SLP approach will not provide adequate epidermal protection for darker skin patients (skin types V-VI), even for eta = 100%. In contrast, the MCS-MLP approach may be a viable solution to improve PWS laser therapy for darker skin patients.
冷冻喷雾冷却(CSC)用于在激光治疗葡萄酒色斑(PWS)胎记时将表皮损伤风险降至最低。不幸的是,CSC可能无法为表皮黑色素浓度高的患者提供必要的保护。本研究的目的是:(1)根据给定冷却时间内每单位皮肤面积去除的热量给出冷却效率(η)的定义;(2)使用该定义确定先前报道的喷雾喷嘴的η;(3)仅基于η的改善确定PWS激光治疗预期的最大益处;(4)研究使用多次间歇性冷冻剂喷射和激光脉冲改善PWS激光治疗的可行性。
研究设计/材料与方法:引入了量化η的理论定义。随后,使用有限差分热扩散和蒙特卡洛光分布模型研究PWS皮肤中的空间和时间温度分布,考虑:(1)当前PWS激光治疗方法,即单次冷冻剂喷射后单次脉冲染料激光照射(SCS-SLP方法);(2)多次冷冻剂喷射和激光脉冲(MCS-MLP方法)。同时,使用阿伦尼乌斯型动力学模型计算表皮黑色素浓度高(20%)、对应皮肤类型为V-VI时的表皮和PWS热损伤(分别为Ω(E)和Ω(PWS))。
量化了对应广泛传热系数(h)范围的η。对于报道的CSC喷嘴装置,η在40%至98%之间变化。使用SCS-SLP方法表明,对于皮肤类型为V-VI的情况,即使η = 100%也无法防止过度的Ω(E)。相比之下,MCS-MLP方法在相同皮肤类型下能提供足够的表皮保护,同时允许对PWS进行光凝治疗。
新提出的定义允许计算CSC喷嘴装置的冷却效率。已开发并使用计算机模型表明,SCS-SLP方法即使对于η = 100%,也无法为肤色较深的患者(皮肤类型为V-VI)提供足够的表皮保护。相比之下,MCS-MLP方法可能是改善肤色较深患者PWS激光治疗的可行解决方案。