Shimizu Takahiko, Ikegami Takashi, Ogawara Midori, Suzuki Yo-ichi, Takahashi Mayumi, Morio Hidenori, Shirasawa Takuji
Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan.
J Neurosci Res. 2002 Aug 1;69(3):341-52. doi: 10.1002/jnr.10301.
Protein-L-isoaspartyl methyltransfearase (PIMT) plays a physiological role in the repair of damaged proteins containing isoaspartyl residues. In previous studies, we showed that PIMT-deficient mice developed a fatal epileptic seizure associated with the accumulation of damaged proteins in the brain. The mutant mice also showed a neurodegenerative pathology in hippocampi and impaired spatial memory. Still undefined, however, is how the accumulation of isoaspartates leads to the death of PIMT-deficient mice. In the present study, we generated PIMT transgenic (Tg) mice to investigate whether the exogenous expression of PIMT could improve the symptoms associated with PIMT deficiency. Rescue experiments showed that Tg expression of PIMT driven by a prion promoter effectively cured the PIMT-deficient mice. Biochemically, a higher expression level of transgene led to the effective repair of damaged proteins in vivo. Although a lower level of expression caused an accumulation of damaged proteins in a partially rescued line, the mice survived. Interestingly, synapsin I, which was extensively modified posttranslationally in PIMT-deficient mice, was specifically repaired in a partially rescued, but symptom-improved, Tg line. Our results suggest that an overall accumulation of damaged proteins does not necessarily lead to a fatal epileptic seizure, whereas certain modifications, such as changes in synapsin I, may play a pivotal pathological role in epilepsy.
蛋白质-L-异天冬氨酰甲基转移酶(PIMT)在修复含有异天冬氨酰残基的受损蛋白质过程中发挥着生理作用。在先前的研究中,我们发现PIMT缺陷型小鼠会出现致命的癫痫发作,这与大脑中受损蛋白质的积累有关。这些突变小鼠在海马体中还表现出神经退行性病理变化以及空间记忆受损。然而,异天冬氨酸的积累如何导致PIMT缺陷型小鼠死亡仍不明确。在本研究中,我们构建了PIMT转基因(Tg)小鼠,以研究PIMT的外源表达是否能够改善与PIMT缺陷相关的症状。拯救实验表明,由朊病毒启动子驱动的PIMT的Tg表达有效地治愈了PIMT缺陷型小鼠。从生化角度来看,转基因的较高表达水平导致体内受损蛋白质得到有效修复。虽然较低水平的表达在部分拯救品系中导致了受损蛋白质的积累,但这些小鼠存活了下来。有趣的是,在PIMT缺陷型小鼠中经过广泛翻译后修饰的突触素I,在部分拯救但症状改善的Tg品系中得到了特异性修复。我们的结果表明,受损蛋白质的总体积累不一定会导致致命的癫痫发作,而某些修饰,如突触素I的变化,可能在癫痫中起关键的病理作用。