BuSha Brett F, Stella Martha H
Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
J Appl Physiol (1985). 2002 Aug;93(2):685-96. doi: 10.1152/japplphysiol.00951.2001.
The quantification of respiratory variability may provide insight into the integrative control of breathing. To test the hypothesis that sleep and/or increased chemical drive modifies respiratory variability, six male adult Sprague-Dawley rats were instrumented with diaphragm electromyographic (EMG) electrodes and exposed to 0, 2.5, and 5.0% CO2 with a balance of room air during wakefulness and behaviorally determined sleep. Respiratory interval (Ttot), peak diaphragm EMG, and ventilation index (peak diaphragm EMG/Ttot) were calculated for 1,024 sequential breaths. The variability of breathing was quantified with a measurement of signal complexity, the approximate entropy, and two autocorrelation measurements, the autoregressive power spectrum slope and the detrended fluctuation analysis slope. Elevated chemical drive and/or sleep significantly modulated the variability of ventilation index and Ttot. There were also significant interactions between state and CO2 drive in all respiratory parameters. We conclude that state (sleep or wakefulness) and increased chemical drive affect respiratory variability differentially.