Suppr超能文献

柯利克-富斯核通过一种增益控制机制调节呼吸节律变异性。

Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism.

作者信息

Dhingra Rishi R, Dutschmann Mathias, Galán Roberto F, Dick Thomas E

机构信息

Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.

Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, Ohio.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2017 Feb 1;312(2):R172-R188. doi: 10.1152/ajpregu.00238.2016. Epub 2016 Dec 14.

Abstract

Respiration varies from breath to breath. On the millisecond timescale of spiking, neuronal circuits exhibit variability due to the stochastic properties of ion channels and synapses. Does this fast, microscopic source of variability contribute to the slower, macroscopic variability of the respiratory period? To address this question, we modeled a stochastic oscillator with forcing; then, we tested its predictions experimentally for the respiratory rhythm generated by the in situ perfused preparation during vagal nerve stimulation (VNS). Our simulations identified a relationship among the gain of the input, entrainment strength, and rhythm variability. Specifically, at high gain, the periodic input entrained the oscillator and reduced variability, whereas at low gain, the noise interacted with the input, causing events known as "phase slips", which increased variability on a slow timescale. Experimentally, the in situ preparation behaved like the low-gain model: VNS entrained respiration but exhibited phase slips that increased rhythm variability. Next, we used bilateral muscimol microinjections in discrete respiratory compartments to identify areas involved in VNS gain control. Suppression of activity in the nucleus tractus solitarii occluded both entrainment and amplification of rhythm variability by VNS, confirming that these effects were due to the activation of the Hering-Breuer reflex. Suppressing activity of the Kölliker-Fuse nuclei (KFn) enhanced entrainment and reduced rhythm variability during VNS, consistent with the predictions of the high-gain model. Together, the model and experiments suggest that the KFn regulates respiratory rhythm variability via a gain control mechanism.

摘要

呼吸在每次呼吸之间都会有所变化。在神经元放电的毫秒时间尺度上,由于离子通道和突触的随机特性,神经回路表现出变异性。这种快速的、微观的变异性来源是否会导致呼吸周期较慢的、宏观的变异性?为了解决这个问题,我们构建了一个带强迫作用的随机振荡器模型;然后,我们通过实验测试了其对于迷走神经刺激(VNS)期间原位灌注标本产生的呼吸节律的预测。我们的模拟确定了输入增益、夹带强度和节律变异性之间的关系。具体而言,在高增益时,周期性输入使振荡器同步并降低变异性,而在低增益时,噪声与输入相互作用,导致所谓的“相位滑移”事件,这在较慢的时间尺度上增加了变异性。在实验中,原位标本的行为类似于低增益模型:VNS使呼吸同步,但表现出相位滑移,从而增加了节律变异性。接下来,我们在离散的呼吸区室中进行双侧微量注射蝇蕈醇,以确定参与VNS增益控制的区域。孤束核活动的抑制消除了VNS对节律变异性的同步和放大作用,证实这些效应是由于黑林-布雷尔反射的激活所致。抑制 Kölliker-Fuse 核(KFn)的活动增强了VNS期间的同步并降低了节律变异性,这与高增益模型的预测一致。模型和实验共同表明,KFn通过增益控制机制调节呼吸节律变异性。

相似文献

1
Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism.
Am J Physiol Regul Integr Comp Physiol. 2017 Feb 1;312(2):R172-R188. doi: 10.1152/ajpregu.00238.2016. Epub 2016 Dec 14.
3
The pontine Kölliker-Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity.
Respir Physiol Neurobiol. 2021 Feb;284:103563. doi: 10.1016/j.resp.2020.103563. Epub 2020 Oct 11.
4
Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome.
J Physiol. 2019 May;597(10):2651-2672. doi: 10.1113/JP277592. Epub 2019 Apr 16.
5
Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.
Respir Physiol Neurobiol. 2016 Jun;226:110-4. doi: 10.1016/j.resp.2016.01.007. Epub 2016 Feb 1.
6
Decreased Hering-Breuer input-output entrainment in a mouse model of Rett syndrome.
Front Neural Circuits. 2013 Apr 3;7:42. doi: 10.3389/fncir.2013.00042. eCollection 2013.
7
The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting.
J Neurophysiol. 2018 Feb 1;119(2):401-412. doi: 10.1152/jn.00499.2017. Epub 2017 Oct 25.
8
Excitation-inhibition balance regulates the patterning of spinal and cranial inspiratory motor outputs in rats in situ.
Respir Physiol Neurobiol. 2019 Aug;266:95-102. doi: 10.1016/j.resp.2019.05.001. Epub 2019 May 2.
9
Exploring the role of the Kölliker-Fuse nucleus in breathing variability by mathematical modelling.
J Physiol. 2024 Jan;602(1):93-112. doi: 10.1113/JP285158. Epub 2023 Dec 8.
10
Nonassociative learning promotes respiratory entrainment to mechanical ventilation.
PLoS One. 2007 Sep 12;2(9):e865. doi: 10.1371/journal.pone.0000865.

引用本文的文献

1
Ion channels in respiratory rhythm generation and sensorimotor integration.
Neuron. 2025 Jul 21. doi: 10.1016/j.neuron.2025.06.011.
2
Central Bradypnea and Ataxic Breathing in Myotonic Dystrophy Type 1 - A Clinical Case Report.
J Neuromuscul Dis. 2023;10(3):465-471. doi: 10.3233/JND-221652.
4
Mechanisms of opioid-induced respiratory depression.
Arch Toxicol. 2022 Aug;96(8):2247-2260. doi: 10.1007/s00204-022-03300-7. Epub 2022 Apr 26.
5
Automated evaluation of respiratory signals to provide insight into respiratory drive.
Respir Physiol Neurobiol. 2022 Jun;300:103872. doi: 10.1016/j.resp.2022.103872. Epub 2022 Feb 24.
6
Breathing rate variability in obstructive sleep apnea during wakefulness.
J Clin Sleep Med. 2022 Mar 1;18(3):825-833. doi: 10.5664/jcsm.9728.
7
Interaction between the pulmonary stretch receptor and pontine control of expiratory duration.
Respir Physiol Neurobiol. 2021 Nov;293:103715. doi: 10.1016/j.resp.2021.103715. Epub 2021 Jun 11.
8
Toxicities of opioid analgesics: respiratory depression, histamine release, hemodynamic changes, hypersensitivity, serotonin toxicity.
Arch Toxicol. 2021 Aug;95(8):2627-2642. doi: 10.1007/s00204-021-03068-2. Epub 2021 May 11.
9
Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding.
J Neurophysiol. 2021 May 1;125(5):1899-1919. doi: 10.1152/jn.00017.2021. Epub 2021 Apr 7.

本文引用的文献

2
Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.
Respir Physiol Neurobiol. 2016 Jun;226:110-4. doi: 10.1016/j.resp.2016.01.007. Epub 2016 Feb 1.
4
A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.
PLoS One. 2014 Oct 10;9(10):e109894. doi: 10.1371/journal.pone.0109894. eCollection 2014.
5
On how correlations between excitatory and inhibitory synaptic inputs maximize the information rate of neuronal firing.
Front Comput Neurosci. 2014 Jun 6;8:59. doi: 10.3389/fncom.2014.00059. eCollection 2014.
8
Learning to breathe: habituation of Hering-Breuer inflation reflex emerges with postnatal brainstem maturation.
Respir Physiol Neurobiol. 2014 May 1;195:44-9. doi: 10.1016/j.resp.2014.02.009. Epub 2014 Feb 22.
9
Time-frequency methods and voluntary ramped-frequency breathing: a powerful combination for exploration of human neurophysiological mechanisms.
J Appl Physiol (1985). 2013 Dec;115(12):1806-21. doi: 10.1152/japplphysiol.00802.2013. Epub 2013 Oct 10.
10
Chronotaxic systems: a new class of self-sustained nonautonomous oscillators.
Phys Rev Lett. 2013 Jul 12;111(2):024101. doi: 10.1103/PhysRevLett.111.024101. Epub 2013 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验