Uyeda Taro Q P, Tokuraku Kiyotaka, Kaseda Kuniyoshi, Webb Martin R, Patterson Bruce
Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan.
Biochemistry. 2002 Jul 30;41(30):9525-34. doi: 10.1021/bi026177i.
Gly 680 of Dictyostelium myosin II sits at a critical position within the reactive thiol helices. We have previously shown that G680V mutant subfragment 1 largely remains in strongly actin-bound states in the presence of ATP. We speculated that acto-G680V subfragment 1 complexes accumulate in the A.M.ADP.P(i) state on the basis of the biochemical phenotypes conferred by mutations which suppress the G680V mutation in vivo [Wu, Y., et al. (1999) Genetics 153, 107-116]. Here, we report further characterization of the interaction between actin and G680V subfragment 1. Light scattering data demonstrate that the majority of G680V subfragment 1 is bound to actin in the presence of ATP. These acto-G680V subfragment 1 complexes in the presence of ATP do not efficiently quench the fluorescence of pyrene-actin, unlike those in rigor complexes or in the presence of ADP alone. Kinetic analyses demonstrated that phosphate release, but not ATP hydrolysis or ADP release, is very slow and rate limiting in the acto-G680V subfragment 1 ATPase cycle. Single turnover kinetic analysis demonstrates that, during ATP hydrolysis by the acto-G680V subfragment 1 complex, quenching of pyrene fluorescence significantly lags the increase of light scattering. This is unlike the situation with wild-type subfragment 1, where the two signals have similar rate constants. These data support the hypothesis that the main intermediate during ATP hydrolysis by acto-G680V subfragment 1 is an acto-subfragment 1 complex carrying ADP and P(i), which scatters light but does not quench the pyrene fluorescence and so has a different conformation from the rigor complex.
盘基网柄菌肌球蛋白II的甘氨酸680位于反应性巯基螺旋内的关键位置。我们之前已经表明,在ATP存在的情况下,G680V突变体亚片段1大部分仍处于与肌动蛋白紧密结合的状态。基于体内抑制G680V突变的突变所赋予的生化表型,我们推测肌动蛋白-G680V亚片段1复合物在A.M.ADP.P(i)状态下积累[Wu, Y.,等人(1999年)《遗传学》153, 107 - 116]。在此,我们报告了肌动蛋白与G680V亚片段1之间相互作用的进一步特征。光散射数据表明,在ATP存在的情况下,大多数G680V亚片段1与肌动蛋白结合。与在僵直复合物中或仅存在ADP时的情况不同,在ATP存在下的这些肌动蛋白-G680V亚片段1复合物不能有效地淬灭芘标记肌动蛋白的荧光。动力学分析表明,在肌动蛋白-G680V亚片段1的ATP酶循环中,磷酸释放非常缓慢且是限速步骤,而不是ATP水解或ADP释放。单周转动力学分析表明,在肌动蛋白-G680V亚片段1复合物水解ATP的过程中,芘荧光的淬灭明显滞后于光散射的增加。这与野生型亚片段1的情况不同,在野生型中这两个信号具有相似的速率常数。这些数据支持了这样的假设,即肌动蛋白-G680V亚片段1水解ATP过程中的主要中间体是携带ADP和P(i)的肌动蛋白-亚片段1复合物,该复合物能散射光但不淬灭芘荧光,因此其构象与僵直复合物不同。