Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8562, Japan.
J Biol Chem. 2012 Jul 13;287(29):24339-45. doi: 10.1074/jbc.M111.321752. Epub 2012 May 27.
The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes.
肌动蛋白中的 G146V 突变在酵母中是显性致死的。G146V 肌动蛋白丝与胞质分裂蛋白结合的能力极小,可能是因为胞质分裂蛋白的结合需要大、小肌动蛋白结构域围绕含甘氨酸 146 的铰链区域相互扭转,而突变抑制了这种扭转运动。许多研究表明,肌球蛋白产生力也需要肌动蛋白丝发生构象变化。这促使我们研究 G146V 突变对肌球蛋白运动的影响。与野生型肌动蛋白丝相比,G146V 肌动蛋白丝在涂有骨骼肌重酶解肌球蛋白的表面上的滑行速度慢 78%,停顿力小 70%。相比之下,G146V 突变对肌球蛋白 V 表面的滑行速度或停顿力均无影响。肌动蛋白-肌球蛋白结合和 ATP 酶活性的动力学分析表明,携带 ADP 的肌球蛋白头部与肌动蛋白丝的亲和力较弱,以及肌动蛋白激活的 ATP 酶活性降低,是骨骼肌肌球蛋白运动减弱的原因。有趣的是,G146V 突变破坏了肌球蛋白 II 头部与肌动蛋白丝的协同结合。这些数据表明,肌球蛋白诱导的肌动蛋白丝构象变化,可能在铰链区域周围,参与了骨骼肌肌球蛋白的运动,但不参与肌球蛋白 V 的运动,肌球蛋白亚基的特定结构要求,以及运动的机制,在肌球蛋白类别之间存在差异。