Nivinskas Henrikas, Staskeviciene Sigita, Sarlauskas Jonas, Koder Ronald L, Miller Anne Frances, Cenas Narimantas
Institute of Biochemistry, Mokslininku 12, 2600, Vilnius, Lithuania.
Arch Biochem Biophys. 2002 Jul 15;403(2):249-58. doi: 10.1016/s0003-9861(02)00228-x.
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes two-electron reduction of a series of quinoidal compounds according to a "ping-pong" scheme, with marked substrate inhibition by quinones. The steady-state catalytic constants (k(cat)) range from 0.1 to 1600s(-1), and bimolecular rate constants (k(cat)/K(m)) range from 10(3) to 10(8)M(-1)s(-1). Quinones, nitroaromatic compounds and competitive to NADH inhibitor dicumarol, quench the flavin mononucleotide (FMN) fluorescence of nitroreductase. The reactivity of NR with single-electron acceptors is consistent with an "outer-sphere" electron transfer model, taking into account high potential of FMN semiquinone/FMNH(-) couple and good solvent accessibility of FMN. However, the single-electron acceptor 1,1(')-dibenzyl-4,4(')-bipyridinium was far less reactive than quinones possessing similar single-electron reduction potentials (E(1)(7)). For all quinoidal compounds except 2-hydroxy-1,4-naphthoquinones, there existed parabolic correlations between the log of rate constants of quinone reduction and their E(1)(7) or hydride-transfer potential (E(7)(Q/QH(-))). Based on pH dependence of rate constants, a single-step hydride transfer seems to be a more feasible quinone reduction mechanism. The reactivities of 2-hydroxy-1,4-naphthoquinones were much higher than expected from their reduction potential. Most probably, their enhanced reactivity was determined by their binding at or close to the binding site of NADH and dicumarol, whereas other quinones used the alternative, currently unidentified binding site.
阴沟肠杆菌NAD(P)H:硝基还原酶(NR;EC 1.6.99.7)根据“乒乓”机制催化一系列醌类化合物的双电子还原反应,醌类会对其产生显著的底物抑制作用。稳态催化常数(k(cat))范围为0.1至1600 s⁻¹,双分子速率常数(k(cat)/K(m))范围为10³至10⁸ M⁻¹ s⁻¹。醌类、硝基芳香化合物以及NADH竞争性抑制剂双香豆素会淬灭硝基还原酶的黄素单核苷酸(FMN)荧光。考虑到FMN半醌/FMNH⁻电对的高电位以及FMN良好的溶剂可及性,NR与单电子受体的反应性符合“外层”电子转移模型。然而,单电子受体1,1'-二苄基-4,4'-联吡啶鎓的反应性远低于具有相似单电子还原电位(E(1)(7))的醌类。对于除2-羟基-1,4-萘醌之外的所有醌类化合物,醌还原反应速率常数的对数与其E(1)(7)或氢化物转移电位(E(7)(Q/QH⁻))之间存在抛物线相关性。基于速率常数的pH依赖性,单步氢化物转移似乎是更可行的醌还原机制。2-羟基-1,4-萘醌的反应性远高于根据其还原电位预期的值。很可能,它们增强的反应性是由其在NADH和双香豆素结合位点或附近的结合所决定的,而其他醌类则使用目前尚未确定的替代结合位点。