Anusevicius Zilvinas, Sarlauskas Jonas, Cenas Narimantas
Institute of Biochemistry, Mokslininku12, Vilnius LT-2600, Lithuania.
Arch Biochem Biophys. 2002 Aug 15;404(2):254-62. doi: 10.1016/s0003-9861(02)00273-4.
Mammalian NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2) catalyzes the two-electron reduction of quinones and plays one of the main roles in the bioactivation of quinoidal drugs. In order to understand the enzyme substrate specificity, we have examined the reactions of rat NQO1 with a number of quinones with available potentials of single-electron (E(1)(7)) reduction and pK(a) of their semiquinones. The hydride transfer potentials (E(7)(H(-))) were calculated from the midpoint potentials of quinones and pK(a) of hydroquinones. Our findings imply that benzo- and naphthoquinones with a van der Waals volume (VdWvol) < or = 200 A(3) are much more reactive than glutathionyl-substituted naphthoquinones, polycyclic quinones, and FMN (VdWvol>200 A(3)) with the same reduction potentials. The entropies of activation (DeltaS(not equal)) in the reduction of "fast" oxidants are equal to -84 to -76 J mol(-1) K(-1), whereas in the reduction of "slow" oxidants Delta S(not equal)=-36 to -11 J mol(-1) K(-1). The large negative Delta S(not equal) in the reduction of fast oxidants may be explained by their better electronic coupling with reduced FAD or the formation of charge-transfer complexes, since fast oxidants bind at the dicumarol binding site, whereas the binding of some slow oxidants outside it has been demonstrated. The reactivity of quinones may be equally well described in terms of the three-step (e(-),H(+),e(-)) hydride transfer, using E(1)(7), pK(a)(QH*), and VdWvol as correlation parameters, or in terms of single-step (H(-)) hydride transfer, using E(7)(H(-)) and VdWvol in the correlation. The analysis of NQO1 reactions with single-electron acceptors and quinones using an "outer-sphere" electron transfer model points to the possibility of a three-step hydride transfer.
哺乳动物NAD(P)H:醌氧化还原酶(NQO1,DT-黄递酶,EC 1.6.99.2)催化醌的双电子还原反应,并在醌类药物的生物活化过程中发挥主要作用之一。为了了解该酶的底物特异性,我们研究了大鼠NQO1与多种具有单电子还原电位(E(1)(7))及其半醌pK(a)值的醌的反应。氢化物转移电位(E(7)(H(-)))由醌的中点电位和对苯二酚的pK(a)值计算得出。我们的研究结果表明,范德华体积(VdWvol)≤200 Å(3)的苯醌和萘醌比具有相同还原电位的谷胱甘肽取代萘醌、多环醌和FMN(VdWvol>200 Å(3))反应活性高得多。“快速”氧化剂还原反应中的活化熵(ΔS(≠))为-84至-76 J mol(-1) K(-1),而“慢速”氧化剂还原反应中的ΔS(≠)=-36至-11 J mol(-1) K(-1)。快速氧化剂还原反应中较大的负ΔS(≠)可能是由于它们与还原型FAD具有更好的电子耦合或形成了电荷转移复合物,因为快速氧化剂结合在双香豆素结合位点,而一些慢速氧化剂则结合在该位点之外。使用E(1)(7)、pK(a)(QH*)和VdWvol作为相关参数,以三步(e(-)、H(+)、e(-))氢化物转移来描述醌的反应活性,与使用E(7)(H(-))和VdWvol以单步(H(-))氢化物转移来描述醌的反应活性同样合适。使用“外层球”电子转移模型对NQO1与单电子受体和醌的反应进行分析,表明存在三步氢化物转移的可能性。