Suppr超能文献

从基因足迹到抗菌药物靶点:辅因子生物合成途径中的实例

From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways.

作者信息

Gerdes Svetlana Y, Scholle Michael D, D'Souza Mark, Bernal Axel, Baev Mark V, Farrell Michael, Kurnasov Oleg V, Daugherty Matthew D, Mseeh Faika, Polanuyer Boris M, Campbell John W, Anantha Shubha, Shatalin Konstantin Y, Chowdhury Shamim A K, Fonstein Michael Y, Osterman Andrei L

机构信息

Integrated Genomics Inc., Chicago, Illinois 60612, USA.

出版信息

J Bacteriol. 2002 Aug;184(16):4555-72. doi: 10.1128/JB.184.16.4555-4572.2002.

Abstract

Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets. Our strategy is based on genetic footprinting in Escherichia coli followed by metabolic context analysis of essential gene orthologs in various species. Genes required for viability of E. coli in rich medium were identified on a whole-genome scale using the genetic footprinting technique. Potential target pathways were deduced from these data and compared with a panel of representative bacterial pathogens by using metabolic reconstructions from genomic data. Conserved and indispensable functions revealed by this analysis potentially represent broad-spectrum antibacterial targets. Further target prioritization involves comparison of the corresponding pathways and individual functions between pathogens and the human host. The most promising targets are validated by direct knockouts in model pathogens. The efficacy of this approach is illustrated using examples from metabolism of adenylate cofactors NAD(P), coenzyme A, and flavin adenine dinucleotide. Several drug targets within these pathways, including three distantly related adenylyltransferases (orthologs of the E. coli genes nadD, coaD, and ribF), are discussed in detail.

摘要

为了设计对抗抗生素耐药病原体的新防御方法,需要新型药物靶点。基于对细菌病原体及其宿主相关生物学过程的理解,比较基因组学为在先前未探索的细胞功能中寻找最佳靶点提供了新机会。我们描述了一种用于识别和优先排序广谱药物靶点的综合方法。我们的策略基于大肠杆菌中的遗传足迹分析,随后对各种物种中必需基因直系同源物进行代谢背景分析。使用遗传足迹技术在全基因组规模上鉴定了大肠杆菌在丰富培养基中生存所需的基因。从这些数据中推断出潜在的靶标途径,并通过使用基因组数据的代谢重建与一组代表性细菌病原体进行比较。该分析揭示的保守且不可或缺的功能可能代表广谱抗菌靶点。进一步的靶点优先级排序涉及比较病原体与人类宿主之间的相应途径和个体功能。最有前景的靶点通过在模式病原体中直接敲除来验证。使用腺苷酸辅因子NAD(P)、辅酶A和黄素腺嘌呤二核苷酸代谢的例子说明了这种方法的有效性。详细讨论了这些途径中的几个药物靶点,包括三种远缘相关的腺苷酸转移酶(大肠杆菌基因nadD、coaD和ribF的直系同源物)。

相似文献

1
From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways.
J Bacteriol. 2002 Aug;184(16):4555-72. doi: 10.1128/JB.184.16.4555-4572.2002.
2
Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.
J Cell Physiol. 2011 Feb;226(2):331-40. doi: 10.1002/jcp.22419.
3
Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00692-17. Print 2017 Jul 1.
4
Modular Engineering of the Flavin Pathway in Escherichia coli for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production.
J Agric Food Chem. 2019 Jun 12;67(23):6532-6540. doi: 10.1021/acs.jafc.9b02646. Epub 2019 Jun 3.
9
Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection.
J Biol Chem. 2010 Dec 10;285(50):39490-9. doi: 10.1074/jbc.M110.185629. Epub 2010 Oct 6.

引用本文的文献

1
NAD(H) and NADP(H) in plants and mammals.
Mol Plant. 2025 Jun 2;18(6):938-959. doi: 10.1016/j.molp.2025.05.004. Epub 2025 May 13.
2
Chemical genetic interactions elucidate pathways controlling tuberculosis antibiotic efficacy during infection.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2417525122. doi: 10.1073/pnas.2417525122. Epub 2025 Feb 24.
4
Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions.
World J Microbiol Biotechnol. 2024 Jul 29;40(9):285. doi: 10.1007/s11274-024-04090-z.
5
Site-directed mutagenesis of bifunctional riboflavin kinase/FMN adenylyltransferase via CRISPR/Cas9 to enhance riboflavin production.
Synth Syst Biotechnol. 2024 Apr 16;9(3):503-512. doi: 10.1016/j.synbio.2024.04.011. eCollection 2024 Sep.
6
Structure of a novel form of phosphopantetheine adenylyltransferase from Klebsiella pneumoniae at 2.59 Å resolution.
Eur Biophys J. 2024 Apr;53(3):147-157. doi: 10.1007/s00249-024-01703-1. Epub 2024 Mar 8.
7
Inhibitors of NAD Production in Cancer Treatment: State of the Art and Perspectives.
Int J Mol Sci. 2024 Feb 8;25(4):2092. doi: 10.3390/ijms25042092.
8
Inhibitors of riboflavin biosynthetic pathway enzymes as potential antibacterial drugs.
Front Mol Biosci. 2023 Jul 11;10:1228763. doi: 10.3389/fmolb.2023.1228763. eCollection 2023.
9
Generation and Validation of an Anti-Human PANK3 Mouse Monoclonal Antibody.
Biomolecules. 2022 Sep 19;12(9):1323. doi: 10.3390/biom12091323.

本文引用的文献

1
Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics.
J Biol Chem. 2002 Jun 14;277(24):21431-9. doi: 10.1074/jbc.M201708200. Epub 2002 Mar 28.
2
A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):966-71. doi: 10.1073/pnas.012602299.
5
Identification, characterization, and crystal structure of Bacillus subtilis nicotinic acid mononucleotide adenylyltransferase.
J Biol Chem. 2002 Feb 1;277(5):3698-707. doi: 10.1074/jbc.M109670200. Epub 2001 Nov 9.
6
Selection analyses of insertional mutants using subgenic-resolution arrays.
Nat Biotechnol. 2001 Nov;19(11):1060-5. doi: 10.1038/nbt1101-1060.
7
Identification of nonessential Helicobacter pylori genes using random mutagenesis and loop amplification.
Res Microbiol. 2001 Oct;152(8):725-34. doi: 10.1016/s0923-2508(01)01253-0.
8
Structural and functional characterization of human NAD kinase.
Biochem Biophys Res Commun. 2001 Oct 19;288(1):69-74. doi: 10.1006/bbrc.2001.5735.
10
Identification of yacE (coaE) as the structural gene for dephosphocoenzyme A kinase in Escherichia coli K-12.
J Bacteriol. 2001 May;183(9):2774-8. doi: 10.1128/JB.183.9.2774-2778.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验