Hou Ying, Hossain Gazi S, Li Jianghua, Shin Hyun-Dong, Du Guocheng, Chen Jian, Liu Long
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China, 214122.
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.
Biotechnol Bioeng. 2017 Sep;114(9):1928-1936. doi: 10.1002/bit.26336. Epub 2017 Jun 27.
Cofactor flavin adenine dinucleotide (FAD) plays a vital role in many FAD-dependent enzymatic reactions; therefore, how to efficiently accelerate FAD synthesis and regeneration is an important topic in biocatalysis and metabolic engineering. In this study, a system involving the synthesis pathway and regeneration of FAD was engineered in Escherichia coli to improve α-keto acid production-from the corresponding l-amino acids-catalyzed by FAD-dependent l-amino acid deaminase (l-AAD). First, key genes, ribH, ribC, and ribF, were overexpressed and fine-tuned for FAD synthesis. In the resulting E. coli strain PHCF7, strong overexpression of pma, ribC, and ribF and moderate overexpression of ribH yielded a 90% increase in phenylpyruvic acid (PPA) titer: 19.4 ± 1.1 g · L . Next, formate dehydrogenase (FDH) and NADH oxidase (NOX) were overexpressed to strengthen the regeneration rate of cofactors FADH /FAD using FDH for FADH /FAD regeneration and NOX for NAD /NADH regeneration. The resulting E. coli strain PHCF7-FDH-NOX yielded the highest PPA production: 31.4 ± 1.1 g · L . Finally, this whole-cell system was adapted to production of other α-keto acids including α-ketoglutaric acid, α-ketoisocaproate, and keto-γ-methylthiobutyric acid to demonstrate the broad utility of strengthening of FAD synthesis and FADH /FAD regeneration for production of α-keto acids. Notably, the strategy reported herein may be generally applicable to other flavin-dependent biocatalysis reactions and metabolic pathway optimizations. Biotechnol. Bioeng. 2017;114: 1928-1936. © 2017 Wiley Periodicals, Inc.
辅因子黄素腺嘌呤二核苷酸(FAD)在许多依赖FAD的酶促反应中起着至关重要的作用;因此,如何有效地加速FAD的合成和再生是生物催化和代谢工程中的一个重要课题。在本研究中,在大肠杆菌中构建了一个涉及FAD合成途径和再生的系统,以提高由依赖FAD的L-氨基酸脱氨酶(L-AAD)催化从相应的L-氨基酸生产α-酮酸的产量。首先,对关键基因ribH、ribC和ribF进行过表达并对FAD合成进行微调。在所得的大肠杆菌菌株PHCF7中,pma、ribC和ribF的强烈过表达以及ribH的适度过表达使苯丙酮酸(PPA)产量提高了90%:19.4±1.1 g·L 。接下来,过表达甲酸脱氢酶(FDH)和NADH氧化酶(NOX),以利用FDH进行FADH /FAD再生和NOX进行NAD /NADH再生来提高辅因子FADH /FAD的再生速率。所得的大肠杆菌菌株PHCF7-FDH-NOX产生了最高的PPA产量:31.4±1.1 g·L 。最后,该全细胞系统适用于生产其他α-酮酸,包括α-酮戊二酸、α-酮异己酸和酮-γ-甲硫基丁酸,以证明加强FAD合成和FADH /FAD再生在生产α-酮酸方面的广泛用途。值得注意的是,本文报道的策略可能普遍适用于其他依赖黄素的生物催化反应和代谢途径优化。生物技术与生物工程。2017;114:1928 - 1936。©2017威利期刊公司