Parent Jack M, Lowenstein Daniel H
Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48104-1687, USA.
Prog Brain Res. 2002;135:121-31. doi: 10.1016/S0079-6123(02)35012-X.
The idea that neural stem cells may play a role in the pathophysiology or potential treatment of specific epilepsy syndromes is relatively new. This notion relates directly to advances in the field of stem cell biology over the past decade, which have confirmed prior theories that both neural stem cells and neurogenesis, the birth of new neurons, persist in specific regions of the adult mammalian brain. The physiological role of persistent neurogenesis is not known, although recent work implicates this process in specific learning and memory tasks. Knowledge of the normal neurogenic pathways in the mature brain has led to recent studies of neurogenesis in rodent models of acute seizures or epileptogenesis. Most of these studies have examined neurogenesis in the adult rodent dentate gyrus, and current evidence indicates that single brief or prolonged seizures, as well as repeated kindled seizures, increase dentate granule cell (DGC) neurogenesis. The models studied to date include pilocarpine and kainic acid models of temporal lobe epilepsy, limbic kindling, and intermittent perforant path stimulation. Recent work also suggests that pilocarpine-induced status epilepticus increases rostral forebrain subventricular zone (SVZ) neurogenesis and caudal SVZ gliogenesis. Several lines of evidence implicate newly generated neurons in structural and functional network abnormalities in the epileptic hippocampal formation of adult rodents. These abnormalities include aberrant mossy fiber reorganization, persistence of immature DGC structure (e.g. basal dendrites), and the abnormal migration of newborn neurons to ectopic sites in the dentate gyrus. Taken together, these findings suggest a pro-epileptogenic role of seizure- or injury-induced neurogenesis in the epileptic hippocampal formation. However, the induction of forebrain SVZ neurogenesis and directed migration to injury after seizures and other brain insults underscores the potential therapeutic use of neural stem cells as a source for neuronal replacement after injury.
神经干细胞可能在特定癫痫综合征的病理生理学或潜在治疗中发挥作用,这一观点相对较新。这一概念直接与过去十年干细胞生物学领域的进展相关,这些进展证实了先前的理论,即神经干细胞和神经发生(新神经元的产生)在成年哺乳动物大脑的特定区域持续存在。尽管最近的研究表明这一过程与特定的学习和记忆任务有关,但持续性神经发生的生理作用尚不清楚。对成熟大脑中正常神经发生途径的了解促使了近期在急性癫痫发作或癫痫发生的啮齿动物模型中对神经发生的研究。这些研究大多检查了成年啮齿动物齿状回中的神经发生,目前的证据表明,单次短暂或长时间发作以及反复点燃发作都会增加齿状颗粒细胞(DGC)的神经发生。迄今为止研究的模型包括颞叶癫痫的毛果芸香碱和 kainic 酸模型、边缘叶点燃模型以及间歇性穿通通路刺激模型。最近的研究还表明,毛果芸香碱诱导的癫痫持续状态会增加前脑嘴侧脑室下区(SVZ)的神经发生和尾侧 SVZ 的神经胶质生成。有几条证据表明,新生神经元与成年啮齿动物癫痫性海马结构中的结构和功能网络异常有关。这些异常包括异常的苔藓纤维重组、未成熟 DGC 结构(如基底树突)的持续存在以及新生神经元向齿状回异位部位的异常迁移。综上所述,这些发现表明癫痫发作或损伤诱导的神经发生在癫痫性海马结构中具有促癫痫作用。然而,癫痫发作和其他脑损伤后前脑 SVZ 神经发生的诱导以及向损伤部位的定向迁移突出了神经干细胞作为损伤后神经元替代来源的潜在治疗用途。