Heringa Jaap
Division of Mathematical Biology, MRC National Institute for Medical Research, London, UK.
Comput Chem. 2002 Jul;26(5):459-77. doi: 10.1016/s0097-8485(02)00008-6.
This paper describes three weighting schemes for improving the accuracy of progressive multiple sequence alignment methods: (1) global profile pre-processing, to capture for each sequence information about other sequences in a profile before the actual multiple alignment takes place; (2) local pre-processing; which incorporates a new protocol to only use non-overlapping local sequence regions to construct the pre-processed profiles; and (3) local-global alignment, a weighting scheme based on the double dynamic programming (DDP) technique to softly bias global alignment to local sequence motifs. The first two schemes allow the compilation of residue-specific multiple alignment reliability indices, which can be used in an iterative fashion. The schemes have been implemented with associated iterative modes in the PRALINE multiple sequence alignment method, and have been evaluated using the BAliBASE benchmark alignment database. These tests indicate that PRALINE is a toolbox able to build alignments with very high quality. We found that local profile pre-processing raises the alignment quality by 5.5% compared to PRALINE alignments generated under default conditions. Iteration enhances the quality by a further percentage point. The implications of multiple alignment scoring functions and iteration in relation to alignment quality and benchmarking are discussed.
(1)全局轮廓预处理,在实际进行多序列比对之前,针对每个序列捕获关于轮廓中其他序列的信息;(2)局部预处理,它采用一种新协议,仅使用不重叠的局部序列区域来构建预处理轮廓;(3)局部-全局比对,一种基于双重动态规划(DDP)技术的加权方案,以轻微偏向于将全局比对导向局部序列基序。前两种方案允许编制特定残基的多序列比对可靠性指数,该指数可迭代使用。这些方案已在PRALINE多序列比对方法中与相关的迭代模式一起实现,并使用BAliBASE基准比对数据库进行了评估。这些测试表明PRALINE是一个能够构建高质量比对的工具箱。我们发现,与在默认条件下生成的PRALINE比对相比,局部轮廓预处理将比对质量提高了5.5%。迭代进一步将质量提高了一个百分点。还讨论了多序列比对评分函数和迭代与比对质量和基准测试的关系。