Suppr超能文献

果蝇蛋氨酸-R-亚砜还原酶中锌的反应机制、进化分析及作用

Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase.

作者信息

Kumar R Abhilash, Koc Ahmet, Cerny Ronald L, Gladyshev Vadim N

机构信息

Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA.

出版信息

J Biol Chem. 2002 Oct 4;277(40):37527-35. doi: 10.1074/jbc.M203496200. Epub 2002 Jul 26.

Abstract

Methionine residues in proteins are susceptible to oxidation, and the resulting methionine sulfoxides can be reduced back to methionines by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). Herein, we have identified two MsrB families that differ by the presence of zinc. Evolutionary analyses suggested that the zinc-containing MsrB proteins are prototype enzymes and that the metal was lost in certain MsrB proteins later in evolution. Zinc-containing Drosophila MsrB was further characterized. The enzyme was found to employ a catalytic Cys(124) thiolate, which directly interacted with methionine sulfoxide, resulting in methionine and a Cys(124) sulfenic acid intermediate. A subsequent reaction of this intermediate with Cys(69) generated an intramolecular disulfide. Dithiothreitol could reduce either the sulfenic acid or the disulfide, but the disulfide was a preferred substrate for thioredoxin, a natural electron donor. Interestingly, the C69S mutant could complement MsrA/MsrB deficiency in yeast, and the corresponding natural form of mouse MsrB was active with thioredoxin. These data indicate that MsrB proteins employ alternative mechanisms for sulfenic acid reduction. Four other conserved cysteines in Drosophila MsrB (Cys(51), Cys(54), Cys(101), and Cys(104)) were found to coordinate structural zinc. Mutation of any one or a combination of these residues resulted in complete loss of metal and catalytic activity, demonstrating an essential role of zinc in Drosophila MsrB. In contrast, two conserved histidines were important for thioredoxin-dependent activity, but were not involved in zinc binding. A Drosophila MsrA gene was also cloned, and the recombinant enzyme was found to be metal-free and specific for methionine S-sulfoxide and to employ a similar sulfenic acid/disulfide mechanism.

摘要

蛋白质中的甲硫氨酸残基易被氧化,生成的甲硫氨酸亚砜可被甲硫氨酸 - S - 亚砜还原酶(MsrA)和甲硫氨酸 - R - 亚砜还原酶(MsrB)还原为甲硫氨酸。在此,我们鉴定出了两个因锌的存在与否而不同的MsrB家族。进化分析表明,含锌的MsrB蛋白是原型酶,金属在进化后期于某些MsrB蛋白中丢失。对含锌的果蝇MsrB进行了进一步表征。该酶被发现利用催化性的半胱氨酸(Cys(124))硫醇盐,其直接与甲硫氨酸亚砜相互作用生成甲硫氨酸和半胱氨酸(Cys(124))亚磺酸中间体。该中间体随后与半胱氨酸(Cys(69))反应生成分子内二硫键。二硫苏糖醇可还原亚磺酸或二硫键,但二硫键是天然电子供体硫氧还蛋白的首选底物。有趣的是,C69S突变体可弥补酵母中MsrA/MsrB的缺陷,且小鼠MsrB的相应天然形式对硫氧还蛋白有活性。这些数据表明,MsrB蛋白采用替代机制进行亚磺酸还原。果蝇MsrB中的其他四个保守半胱氨酸(半胱氨酸(Cys(51))、半胱氨酸(Cys(54))、半胱氨酸(Cys(101))和半胱氨酸(Cys(104)))被发现可配位结构锌。这些残基中任何一个或其组合的突变都会导致金属和催化活性完全丧失,证明锌在果蝇MsrB中起关键作用。相比之下,两个保守组氨酸对硫氧还蛋白依赖性活性很重要,但不参与锌结合。还克隆了果蝇MsrA基因,发现重组酶不含金属,对甲硫氨酸S - 亚砜具有特异性,并采用类似的亚磺酸/二硫键机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验