Shin Youn Hee, Park Eun-Hee, Fuchs James A, Lim Chang-Jin
Division of Life Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701, South Korea.
Biochim Biophys Acta. 2002 Aug 19;1577(1):164-70. doi: 10.1016/s0167-4781(02)00422-0.
A third gene encoding glutathione S-transferase (GSTIII) was cloned from the fission yeast Schizosaccharomyces pombe. The nucleotide sequence determined was found to contain 2110 base pairs including an open reading frame of 242 amino acids that would encode a protein of a molecular mass of 26,620 Da. The cloned GSTIII gene could be expressed in S. pombe, S. cerevisiae and Escherichia coli cells which gave 1.4-, 2.1-, and 3.0-fold higher GST activity in an assay using 1-chloro-2,4-dinitrobenzene as a substrate, respectively. The cloned GSTIII gene caused higher survivals of S. pombe cells on solid media with cadmium chloride or mercuric chloride. The GSTIII protein has 16% and 18% homologies with the GSTI and GSTII proteins, respectively. To independently monitor the regulation of the GSTIII gene, its 1168 bp upstream region and N-terminal 33 amino acid-coding region was fused into the promoterless beta-galactosidase gene of the shuttle vector YEp357. The synthesis of beta-galactosidase from the fusion plasmid pGY357 was greatly enhanced by cadmium chloride (50 microM), cupric chloride (10 microM), aluminum chloride (5 mM, 10 mM), mercuric chloride (1 microM), and zinc chloride (10 mM). However, the synthesis of beta-galactosidase from the fusion plasmid pGY357 was not affected by superoxide-generating menadione, and o-dinitrobenzene, whereas they could significantly induce the expression of the GSTI and GSTII genes of S. pombe. The overproduced Pap1 inhibited the induction of beta-galactosidase synthesis from the fusion plasmid pGY357 by cadmium chloride, which is opposite to the previously known role of Pap1 in the response to oxidative stress. Our results collectively indicate that the three GST genes of S. pombe are subjected to different regulatory mechanisms. The major role of the GSTIII protein in S. pombe may be the detoxification of various metals.
从裂殖酵母粟酒裂殖酵母中克隆出了第三个编码谷胱甘肽S-转移酶(GSTIII)的基因。测定的核苷酸序列包含2110个碱基对,其中包括一个242个氨基酸的开放阅读框,该开放阅读框编码的蛋白质分子量为26,620道尔顿。克隆的GSTIII基因可在粟酒裂殖酵母、酿酒酵母和大肠杆菌细胞中表达,在以1-氯-2,4-二硝基苯为底物的测定中,这些细胞的GST活性分别提高了1.4倍、2.1倍和3.0倍。克隆的GSTIII基因使粟酒裂殖酵母细胞在含有氯化镉或氯化汞的固体培养基上具有更高的存活率。GSTIII蛋白与GSTI和GSTII蛋白的同源性分别为16%和18%。为了独立监测GSTIII基因的调控,将其1168 bp的上游区域和N端33个氨基酸编码区域融合到穿梭载体YEp357的无启动子β-半乳糖苷酶基因中。融合质粒pGY357合成β-半乳糖苷酶的过程被氯化镉(50 microM)、氯化铜(10 microM)、氯化铝(5 mM、10 mM)、氯化汞(1 microM)和氯化锌(10 mM)大大增强。然而,融合质粒pGY357合成β-半乳糖苷酶的过程不受产生超氧化物的甲萘醌和邻二硝基苯的影响,而它们能显著诱导粟酒裂殖酵母GSTI和GSTII基因的表达。过量产生的Pap1抑制了氯化镉对融合质粒pGY357合成β-半乳糖苷酶的诱导作用,这与Pap1在氧化应激反应中先前已知的作用相反。我们的结果共同表明,粟酒裂殖酵母的三个GST基因受到不同的调控机制。GSTIII蛋白在粟酒裂殖酵母中的主要作用可能是对各种金属进行解毒。