Leturque Henri, Rousset François
Laboratoire Génétique et Environnement, Institut des Sciences de l'Evolution, CC065, USTL, Place E. Bataillon, 34095 Montpellier Cedex 05, France.
Theor Popul Biol. 2002 Sep;62(2):169-80. doi: 10.1006/tpbi.2002.1600.
In this paper, we reanalyze simple models of the evolution of dispersal in a heterogeneous landscape. Previous analyses concluded that without temporal variability, dispersal can evolve only if it is not costly and if it is conditional on the habitat. If both conditions hold, these models predict that selection on dispersal should lead to balanced dispersal between habitats (the number of immigrants equals the number of emigrants in each habitat). To evaluate the generality of these conclusions, we extended the analysis of these models to finite populations. This requires us to establish fitness measures for finite class-structured populations. These fitness measures allow us to take kin competition into account. Our analysis shows that even without temporal variability, conditional dispersal and the absence of a dispersal cost are not necessary conditions for dispersal to evolve. In the absence of a dispersal cost, we predict that selection on conditional dispersal will always lead to panmixia and not simply to balanced dispersal. When dispersal is costly, we show that the ideal free distribution (IFD) and balanced dispersal do not occur. Our results show that the deviations from IFD are of the order of the dispersal cost. We propose an approach to test our predictions.
在本文中,我们重新分析了异质景观中扩散演化的简单模型。先前的分析得出结论,在没有时间变异性的情况下,只有当扩散没有成本且以栖息地为条件时,扩散才会演化。如果这两个条件都成立,这些模型预测,对扩散的选择应导致栖息地之间的平衡扩散(每个栖息地的迁入个体数量等于迁出个体数量)。为了评估这些结论的普遍性,我们将这些模型的分析扩展到了有限种群。这要求我们为有限的类结构种群建立适合度度量。这些适合度度量使我们能够考虑亲缘竞争。我们的分析表明,即使没有时间变异性,条件扩散和不存在扩散成本也不是扩散演化的必要条件。在没有扩散成本的情况下,我们预测对条件扩散的选择将总是导致随机交配,而不仅仅是平衡扩散。当扩散有成本时,我们表明理想自由分布(IFD)和平衡扩散不会出现。我们的结果表明,与IFD的偏差与扩散成本的量级相同。我们提出了一种方法来检验我们的预测。