Suppr超能文献

使用I-SITES、HMMSTR和ROSETTA进行全自动从头算蛋白质结构预测。

Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA.

作者信息

Bystroff Christopher, Shao Yu

机构信息

Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Bioinformatics. 2002;18 Suppl 1:S54-61. doi: 10.1093/bioinformatics/18.suppl_1.s54.

Abstract

MOTIVATION

The Monte Carlo fragment insertion method for protein tertiary structure prediction (ROSETTA) of Baker and others, has been merged with the I-SITES library of sequence structure motifs and the HMMSTR model for local structure in proteins, to form a new public server for the ab initio prediction of protein structure. The server performs several tasks in addition to tertiary structure prediction, including a database search, amino acid profile generation, fragment structure prediction, and backbone angle and secondary structure prediction. Meeting reasonable service goals required improvements in the efficiency, in particular for the ROSETTA algorithm.

RESULTS

The new server was used for blind predictions of 40 protein sequences as part of the CASP4 blind structure prediction experiment. The results for 31 of those predictions are presented here. 61% of the residues overall were found in topologically correct predictions, which are defined as fragments of 30 residues or more with a root-mean-square deviation in superimposed alpha carbons of less than 6A. HMMSTR 3-state secondary structure predictions were 73% correct overall. Tertiary structure predictions did not improve the accuracy of secondary structure prediction.

摘要

动机

贝克等人用于蛋白质三级结构预测的蒙特卡罗片段插入方法(ROSETTA),已与序列结构基序的I-SITES库以及蛋白质局部结构的HMMSTR模型合并,形成了一个用于蛋白质结构从头预测的新公共服务器。该服务器除了进行三级结构预测外,还执行多项任务,包括数据库搜索、氨基酸谱生成、片段结构预测以及主链角度和二级结构预测。要实现合理的服务目标,需要提高效率,特别是对于ROSETTA算法。

结果

作为CASP4盲态结构预测实验的一部分,新服务器用于对40个蛋白质序列进行盲态预测。这里展示了其中31个预测的结果。总体而言,61%的残基处于拓扑结构正确的预测中,拓扑结构正确的预测定义为30个或更多残基的片段,其叠加的α碳原子的均方根偏差小于6埃。HMMSTR三态二级结构预测总体正确率为73%。三级结构预测并未提高二级结构预测的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验