Davydov Roman, Ledbetter-Rogers Amy, Martásek Pavel, Larukhin Mikhail, Sono Masanori, Dawson John H, Masters Bettie Sue Siler, Hoffman Brian M
Department of Chemistry, Northwestern University, Evanston, Illinois 60201, USA.
Biochemistry. 2002 Aug 20;41(33):10375-81. doi: 10.1021/bi0260637.
Reconstitution of the endothelial nitric oxide synthase heme domain (NOS) with the catalytically noncompetent 4-aminotetrahydrobiopterin has allowed us to prepare at -40 degrees C the oxyferrous-NOS-substrate complexes of both L-arginine (Arg) and N(G)-hydroxyarginine (NOHA). We have radiolytically cryoreduced these complexes at 77 K and used EPR and ENDOR spectroscopies to characterize the initial products of reduction, as well as intermediates that arise during stepwise annealing to higher temperatures. Peroxo-ferri-NOS is the primary product of 77 K cryoreduction when either Arg or NOHA is the substrate. Proton ENDOR spectra of this state suggest that the peroxo group is H-bonded to a [guanidinium-water] network that forms because the binding of O2 to the ferroheme of NOS recruits H2O. At no stage of reaction/annealing does one observe an EPR signal from a hydroperoxo-ferri state with either substrate. Instead, peroxo-ferri-NOS-substrate complexes convert to a product-state intermediate at the extremely low temperature of 165-170 K. EPR and proton ENDOR spectra of the intermediate formed with Arg as substrate support the suggestion that the reaction involves the formation and attack of Compound I. Within the time/temperature resolution of the present experiments, samples with Arg and NOHA as substrate behave the same in the initial steps of cryoreduction/annealing, despite the different acid/base characteristics of the two substrates. This leads us to discuss the possibility that ambient-temperature catalytic conversion of both substrates is initiated by reduction of the oxy-ferroheme to the hydroperoxo-ferriheme through a coupled proton-electron transfer from a heme-pocket reductant, and that Arg may provide the stoichiometrically second proton of catalysis.
用催化无活性的4-氨基四氢生物蝶呤重构内皮型一氧化氮合酶血红素结构域(NOS),使我们能够在-40℃制备L-精氨酸(Arg)和N(G)-羟基精氨酸(NOHA)的氧合亚铁-NOS-底物复合物。我们在77K下对这些复合物进行辐射冷冻还原,并使用电子顺磁共振(EPR)和电子核双共振(ENDOR)光谱来表征还原的初始产物以及在逐步升温退火过程中出现的中间体。当过氧化物亚铁-NOS以Arg或NOHA为底物时,它是77K冷冻还原的主要产物。该状态的质子ENDOR光谱表明,过氧基团通过氢键与[胍盐-水]网络相连,该网络的形成是因为O2与NOS的亚铁血红素结合会招募H2O。在反应/退火的任何阶段,都未观察到来自任何一种底物的氢过氧化物亚铁状态的EPR信号。相反,过氧化物亚铁-NOS-底物复合物在165-170K的极低温度下转化为产物状态中间体。以Arg为底物形成的中间体的EPR和质子ENDOR光谱支持了该反应涉及化合物I的形成和攻击这一观点。在本实验的时间/温度分辨率范围内,以Arg和NOHA为底物的样品在冷冻还原/退火的初始步骤中表现相同,尽管两种底物的酸碱特性不同。这使我们讨论了这样一种可能性,即两种底物在室温下的催化转化是通过血红素口袋还原剂的质子-电子耦合转移将氧合亚铁血红素还原为氢过氧化物亚铁血红素引发的,并且Arg可能提供催化化学计量中的第二个质子。