Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
Biochim Biophys Acta Proteins Proteom. 2018 Jan;1866(1):178-204. doi: 10.1016/j.bbapap.2017.06.021. Epub 2017 Jun 28.
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
细胞色素 P450 单加氧酶(P450s)是硫醇血红素蛋白,通常在生理条件下,可以催化各种不同分子的许多不同氧化转化,包括相对简单的烷烃或脂肪酸,以及更复杂的化合物,如甾体和外源性污染物。它们利用复杂的催化循环进行如此令人印象深刻的化学转化,该循环涉及血红素辅基的一系列连续化学转化。这些步骤中的每一步都提供了独特的光谱特征,反映了氧化或自旋状态、卟啉环的变形或二氧键的改变。长期以来,细胞色素 P450 研究的重点是理解每个酶促步骤的基本反应机制,最大的挑战是鉴定和表征强大的氧化中间产物。光谱方法,如电子吸收(UV-Vis)、电子顺磁共振(EPR)、核磁共振(NMR)、电子-核双共振(ENDOR)、穆斯堡尔谱、X 射线吸收(XAS)和共振拉曼(rR),一直是提供这些迷人酶的生物物理和生物化学的多方面和详细机制见解的有用工具。光谱技术与新方法(如低温还原和 Nanodisc 技术)的结合,使得生成、捕获和表征长期以来一直寻求的瞬态中间产物成为可能,这是使用其他方法难以实现的任务。本文的重点是从 UV-Vis、rR 和 EPR 光谱学获得的结果,而其余的光谱技术则简要概述。这篇文章是题为“细胞色素 P450 生物多样性和生物技术”的特刊的一部分,由 Erika Plettner、Gianfranco Gilardi、Luet Wong、Vlada Urlacher 和 Jared Goldstone 编辑。