Reed William J, Hughes Barry D
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada.
J Theor Biol. 2002 Jul 7;217(1):125-35. doi: 10.1006/jtbi.2002.3009.
This article deals with the theoretical size (number of species) distribution of live genera, arising from a simple model of macroevolution in which speciations and extinctions are assumed to occur independently and at random, and in which new genera are formed by the random splitting of existing genera. Mathematically, the distribution is that of the state of a homogeneous birth-and-death process after an exponentially distributed time. An ordinary differential equation for the generating function of the distribution is derived and solved and a recurrence relation for computing the probabilities in the distribution presented. Some properties of the distribution, including asymptotic behaviour, are examined and the distribution of the time since establishment of a genus of a given size derived. Fitting the distribution to empirical taxon size distributions by maximum likelihood is discussed and two examples are presented.
本文探讨了现存属的理论规模(物种数量)分布,该分布源自一个简单的宏观进化模型。在这个模型中,物种形成和灭绝被假定为独立且随机发生,并且新属是由现有属的随机分裂形成的。从数学角度来看,这种分布是指数分布时间后齐次生死过程的状态分布。推导并求解了该分布生成函数的常微分方程,给出了用于计算分布中概率的递推关系。研究了该分布的一些性质,包括渐近行为,并推导了给定规模属自建立以来的时间分布。讨论了通过最大似然法将该分布拟合到经验分类单元规模分布的情况,并给出了两个例子。