Suppr超能文献

人苯丙氨酸羟化酶中Ser(16)的磷酸化与突变:动力学及结构效应

Phosphorylation and mutations of Ser(16) in human phenylalanine hydroxylase. Kinetic and structural effects.

作者信息

Miranda Frederico Faria, Teigen Knut, Thórólfsson Matthías, Svebak Randi M, Knappskog Per M, Flatmark Torgeir, Martínez Aurora

机构信息

Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009-Bergen, Norway.

出版信息

J Biol Chem. 2002 Oct 25;277(43):40937-43. doi: 10.1074/jbc.M112197200. Epub 2002 Aug 15.

Abstract

Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.

摘要

环磷酸腺苷依赖性蛋白激酶使苯丙氨酸羟化酶(PAH)的丝氨酸(Ser)16位点发生磷酸化,这是一种翻译后修饰,可增加其基础活性并促进其被底物L-苯丙氨酸激活。到目前为止,关于包括磷酸化位点在内的灵活的N端尾巴(第1 - 18位氨基酸残基)还没有结构信息。为了进一步深入了解磷酸化对催化效率和酶稳定性影响的分子基础,利用重组大鼠酶的晶体结构进行了分子建模。由此获得的N端尾巴最可能的构象和取向表明,Ser16位点的磷酸化由于磷酸基团与精氨酸(Arg)13之间的静电相互作用以及活性位点裂隙结构入口处环中谷氨酸(Glu)280的排斥作用而诱导局部构象变化。如圆二色光谱法和全长磷酸化及未磷酸化人PAH的酶动力学数据所示,N端尾巴残基(甲硫氨酸(Met)1 - 亮氨酸(Leu)15)磷酸化后的模拟重新取向与观察到的构象变化以及底物对活性位点可及性增加一致。为了进一步验证该模型,我们制备并表征了用带负电荷的残基取代Ser16的突变体,发现S16E在很大程度上模拟了人PAH磷酸化的效果。磷酸化酶和用酸性侧链取代Ser16的突变体都显示出对有限胰蛋白酶消化的抗性增加,并且如圆二色光谱法所示,α - 螺旋结构含量增加。与模拟结构一致,Arg13与Ser16之间形成磷酸盐盐桥以及N端尾巴的构象变化也解释了磷酸化酶对有限胰蛋白酶消化具有更高稳定性的原因。用突变体R13A和E381A获得的结果进一步支持了所提出的磷酸化激活该酶分子机制的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验