Suppr超能文献

在病例对照研究中估计风险和率的水平、比率及差异。

Estimating risk and rate levels, ratios and differences in case-control studies.

作者信息

King Gary, Zeng Langche

机构信息

Department of Government, Harvard University, Global Programme on Evidence for Health Policy, World Health Organization, Center for Basic Research in the Social Sciences, 34 Kirkland Street, Harvard University, Cambridge, MA 02138, USA.

出版信息

Stat Med. 2002 May 30;21(10):1409-27. doi: 10.1002/sim.1032.

Abstract

Classic (or 'cumulative') case-control sampling designs do not admit inferences about quantities of interest other than risk ratios, and then only by making the rare events assumption. Probabilities, risk differences and other quantities cannot be computed without knowledge of the population incidence fraction. Similarly, density (or 'risk set') case-control sampling designs do not allow inferences about quantities other than the rate ratio. Rates, rate differences, cumulative rates, risks, and other quantities cannot be estimated unless auxiliary information about the underlying cohort such as the number of controls in each full risk set is available. Most scholars who have considered the issue recommend reporting more than just risk and rate ratios, but auxiliary population information needed to do this is not usually available. We address this problem by developing methods that allow valid inferences about all relevant quantities of interest from either type of case-control study when completely ignorant of or only partially knowledgeable about relevant auxiliary population information.

摘要

经典(或“累积”)病例对照抽样设计无法对风险比以外的感兴趣的数量进行推断,而且只有在做出罕见事件假设的情况下才能对风险比进行推断。如果不知道总体发病率,就无法计算概率、风险差异和其他数量。同样,密度(或“风险集”)病例对照抽样设计不允许对速率比以外的数量进行推断。除非有关于基础队列的辅助信息,如每个完整风险集中的对照数量,否则无法估计发病率、发病率差异、累积发病率、风险和其他数量。大多数考虑过这个问题的学者建议报告的不仅仅是风险比和速率比,但进行此项工作所需的辅助总体信息通常无法获得。我们通过开发一些方法来解决这个问题,这些方法允许在完全不知道或仅部分了解相关辅助总体信息的情况下,从任何一种病例对照研究中对所有相关的感兴趣的数量进行有效的推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验