Veysseyre R, Weigel D, Phan T, Veysseyre H
Laboratoire Structures, Propriétés et Modélisation des Solides UMR 8580, Ecole Centrale de Paris, F-92295 Châtenay-Malabry CEDEX, France.
Acta Crystallogr A. 2002 Sep;58(Pt 5):434-40. doi: 10.1107/s0108767302006219. Epub 2002 Sep 1.
Our previous paper emphasized a method for obtaining the crystallographic point groups of five-dimensional space, i.e. the subgroups of the crystal family holohedries. Moreover, it recalled the names of the crystal families and the symbols of their holohedries. These results being obtained, this paper gives a geometrical symbol to each of these point groups described as Weigel-Phan-Veysseyre symbols (WPV symbols). In most cases, these symbols make it possible to reconstitute all the elements of the groups. The point symmetry operation symbols, which are the basis of the Hermann-Mauguin symbols (HM symbols) as well as of the WPV symbols, that have been defined from the cyclic groups generated by the five-dimensional point symmetry operations are recalled. The basic principles of the WPV system of crystallographic point-group symbols are explained and a list of 196 symbols of five-dimensional space out of 955 is given. All the information given by the WPV symbol of a point group is detailed and analysed through some examples and the study of the (hexagon oblique)-al crystal family. Finally, the polar point groups of five-dimensional space are specified.
我们之前的论文着重介绍了一种获取五维空间晶体学点群的方法,即晶体族全对称型的子群。此外,还回顾了晶体族的名称及其全对称型的符号。在得出这些结果之后,本文为每个这样的点群赋予了一个几何符号,称为魏格尔 - 范 - 韦西塞雷符号(WPV 符号)。在大多数情况下,这些符号能够重构群的所有元素。文中回顾了作为赫尔曼 - 莫古因符号(HM 符号)以及 WPV 符号基础的点对称操作符号,这些符号是根据五维点对称操作生成的循环群定义的。解释了晶体学点群符号 WPV 系统的基本原理,并给出了 955 个五维空间符号中的 196 个符号列表。通过一些示例以及对(六边形斜方) - al 晶体族的研究,详细分析了点群的 WPV 符号所给出的所有信息。最后,明确了五维空间的极性点群。