Suppr超能文献

大肠杆菌GDP-甘露糖甘露糖基水解酶(一种不同寻常的Nudix酶)作用机制的突变、动力学及核磁共振研究

Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.

作者信息

Legler Patricia M, Massiah Michael A, Mildvan Albert S

机构信息

Department of Biological Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.

出版信息

Biochemistry. 2002 Sep 3;41(35):10834-48. doi: 10.1021/bi020362e.

Abstract

GDP-mannose mannosyl hydrolase (GDPMH) is an unusual Nudix family member, which catalyzes the hydrolysis of GDP-alpha-D-mannose to GDP and the beta-sugar by nucleophilic substitution at carbon rather than at phosphorus (Legler, P. M., Massiah, M. A., Bessman, M. J., and Mildvan, A. S. (2000) Biochemistry 39, 8603-8608). Using the structure and mechanism of MutT, the prototypical Nudix enzyme as a guide, we detected six catalytic residues of GDPMH, three of which were unique to GDPMH, by the kinetic and structural effects of site-specific mutations. Glu-70 (corresponding to Glu-57 in MutT) provides a ligand to the essential divalent cation on the basis of the effects of the E70Q mutation which decreased kcat 10(2.2)-fold, increased the dissociation constant of Mn2+ from the ternary E-Mn2+-GDP complex 3-fold, increased the K(m)Mg2+ 20-fold, and decreased the paramagnetic effect of Mn2+ on 1/T1 of water protons, indicating a change in the coordination sphere of Mn2+. In the E70Q mutant, Gln-70 was shown to be very near the active site metal ion by large paramagnetic effects of Mn2+ on its side chain -NH2 group. With wild-type GDPMH, the effect of pH on log(kcat/K(m)GDPmann) at 37 degrees C showed an ascending limb of unit slope, followed by a plateau yielding a pK(a) of 6.4, which increased to 6.7 +/- 0.1 in the pH dependence of log(kcat). The general base catalyst was identified as a neutral His residue by the DeltaH(ionization) = 7.0 +/- 0.7 kcal/mol, by the increase in pK(a) with ionic strength, and by mutation of each of the four histidine residues of GDPMH to Gln. Only the H124Q mutant showed the loss of the ascending limb in the pH versus log(kcat) rate profile, which was replaced by a weak dependence of rate on hydroxide concentration, as well as an overall 10(3.4)-fold decrease in kcat, indicating His-124 to be the general base, unlike MutT, which uses Glu-53 in this role. The H88Q mutant showed a 10(2.3)-fold decrease in kcat, a 4.4-fold increase in K(m)GDPmann, and no change in the pH versus log(kcat) rate profile, indicating an important but unidentified role of His-88 in catalysis. One and two-dimensional NMR studies permitted the sequence specific assignments of the imidazole HdeltaC, H(epsilon)C, N(delta), and N(epsilon) resonances of the four histidines and defined their protonation states. The pK(a) of His-124 (6.94 +/- 0.04) in the presence of saturating Mg2+ was comparable to the kinetically determined pK(a) at the same temperature (6.40 +/- 0.20). The other three histidines were neutral N(epsilon)H tautomers with pK(a) values below 5.5. Arg-52 and Arg-65 were identified as catalytic residues which interact electrostatically with the GDP leaving group by mutating these residues to Gln and Lys. The R52Q mutant decreased kcat 309-fold and increased K(m)GDPmann 40.6-fold, while the R52K mutant decreased kcat by only 12-fold and increased K(m)GDPmann 81-fold. The partial rescue of kcat, but not of K(m)GDPmann in the R52K mutant, suggests that Arg-52 is a bifunctional hydrogen bond donor to the GDP leaving group in the ground state and a monofunctional hydrogen bond donor in the transition state. Opposite behavior was found with the Arg-65 mutants, suggesting this residue to be a monofunctional hydrogen bond donor to the GDP leaving group in the ground state and a bifunctional hydrogen bond donor in the transition state. From these observations, a mechanism for GDPMH is proposed involving general base catalysis and electrostatic stabilization of the leaving group.

摘要

GDP-甘露糖甘露糖基水解酶(GDPMH)是一种不同寻常的Nudix家族成员,它通过在碳原子而非磷原子上进行亲核取代,催化GDP-α-D-甘露糖水解为GDP和β-糖(莱格勒,P.M.,马西亚,M.A.,贝斯曼,M.J.,和米尔德万,A.S.(2000)《生物化学》39,8603 - 8608)。以典型的Nudix酶MutT的结构和机制为指导,我们通过位点特异性突变的动力学和结构效应检测到GDPMH的六个催化残基,其中三个是GDPMH特有的。基于E70Q突变的效应,Glu-70(对应于MutT中的Glu-57)为必需的二价阳离子提供配体,该突变使kcat降低了10^(2.2)倍,使Mn2+从三元E-Mn2+-GDP复合物中的解离常数增加了3倍,使K(m)Mg2+增加了20倍,并降低了Mn2+对水质子1/T1的顺磁效应,表明Mn2+的配位球发生了变化。在E70Q突变体中,通过Mn2+对其侧链-NH2基团的大顺磁效应表明Gln-70非常靠近活性位点金属离子。对于野生型GDPMH,37℃时pH对log(kcat/K(m)GDPmann)的影响显示出单位斜率的上升支,随后是一个平稳期,pK(a)为6.4,在log(kcat)的pH依赖性中增加到6.7±0.1。通过ΔH(电离)=7.0±0.7千卡/摩尔、pK(a)随离子强度的增加以及GDPMH的四个组氨酸残基各自突变为Gln,确定一般碱催化剂为一个中性His残基。只有H124Q突变体在pH与log(kcat)速率曲线中显示上升支的丧失,取而代之的是速率对氢氧根浓度的弱依赖性,以及kcat总体降低了10^(3.4)倍,表明His-124是一般碱,这与在该作用中使用Glu-53的MutT不同。H88Q突变体显示kcat降低了10^(2.3)倍,K(m)GDPmann增加了4.4倍,并且在pH与log(kcat)速率曲线中没有变化,表明His-88在催化中起重要但未明确的作用。一维和二维NMR研究允许对四个组氨酸的咪唑HδC、H(ε)C、N(δ)和N(ε)共振进行序列特异性归属,并确定它们的质子化状态。在存在饱和Mg2+的情况下,His-124的pK(a)(6.94±0.04)与在相同温度下动力学测定的pK(a)(6.40±0.20)相当。其他三个组氨酸是中性N(ε)H互变异构体,pK(a)值低于5.5。通过将这些残基突变为Gln和Lys,确定Arg-52和Arg-65为催化残基,它们与GDP离去基团发生静电相互作用。R52Q突变体使kcat降低了309倍,使K(m)GDPmann增加了40.6倍,而R52K突变体仅使kcat降低了12倍,使K(m)GDPmann增加了81倍。R52K突变体中kcat的部分恢复,但K(m)GDPmann未恢复,表明Arg-52在基态下是GDP离去基团的双功能氢键供体,在过渡态下是单功能氢键供体。在Arg-65突变体中发现了相反的行为,表明该残基在基态下是GDP离去基团的单功能氢键供体,在过渡态下是双功能氢键供体。基于这些观察结果,提出了一种GDPMH的机制,涉及一般碱催化和离去基团的静电稳定作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验