Xia Zuyong, Azurmendi Hugo F, Lairson Luke L, Withers Stephen G, Gabelli Sandra B, Bianchet Mario A, Amzel L Mario, Mildvan Albert S
Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
Biochemistry. 2005 Jun 28;44(25):8989-97. doi: 10.1021/bi050583v.
GDP-mannose hydrolase (GDPMH) catalyzes the hydrolysis of GDP-alpha-d-sugars by nucleophilic substitution with inversion at the anomeric C1 atom of the sugar, with general base catalysis by H124. Three lines of evidence indicate a mechanism with dissociative character. First, in the 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP.Tris(+) complex [Gabelli, S. B., et al. (2004) Structure 12, 927-935], the GDP leaving group interacts with five catalytic components: R37, Y103, R52, R65, and the essential Mg(2+). As determined by the effects of site-specific mutants on k(cat), these components contribute factors of 24-, 100-, 309-, 24-, and >/=10(5)-fold, respectively, to catalysis. Both R37 and Y103 bind the beta-phosphate of GDP and are only 5.0 A apart. Accordingly, the R37Q/Y103F double mutant exhibits partially additive effects of the two single mutants on k(cat), indicating cooperativity of R37 and Y103 in promoting catalysis, and antagonistic effects on K(m). Second, the conserved residue, D22, is positioned to accept a hydrogen bond from the C2-OH group of the sugar undergoing substitution at C1, as was shown by modeling an alpha-d-mannosyl group into the sugar binding site. The D22A and D22N mutations decreased k(cat) by factors of 10(2.1) and 10(2.6), respectively, for the hydrolysis of GDP-alpha-d-mannose, and showed smaller effects on K(m), suggesting that the D22 anion stabilizes a cationic oxocarbenium transition state. Third, the fluorinated substrate, GDP-2F-alpha-d-mannose, for which a cationic oxocarbenium transition state would be destabilized by electron withdrawal, exhibited a 16-fold decrease in k(cat) and a smaller, 2.5-fold increase in K(m). The D22A and D22N mutations further decreased the k(cat) with GDP-2F-alpha-d-mannose to values similar to those found with GDP-alpha-d-mannose, and decreased the K(m) of the fluorinated substrate. The choice of histidine as the general base over glutamate, the preferred base in other Nudix enzymes, is not due to the greater basicity of histidine, since the pK(a) of E124 in the active complex (7.7) exceeded that of H124 (6.7), and the H124E mutation showed a 10(2.2)-fold decrease in k(cat) and a 4.0-fold increase in K(m) at pH 9.3. Similarly, the catalytic triad detected in the X-ray structure (H124- - -Y127- - -P120) is unnecessary for orienting H124, since the Y127F mutation had only 2-fold effects on k(cat) and K(m) with either H124 or E124 as the general base. Hence, a neutral histidine rather than an anionic glutamate may be necessary to preserve electroneutrality in the active complex.
GDP - 甘露糖水解酶(GDPMH)通过在糖的异头C1原子处进行亲核取代并发生构型翻转来催化GDP - α - D - 糖的水解反应,其中H124起到一般碱催化作用。三条证据表明其具有解离性质的机制。首先,在GDPMH - Mg(2+) - GDP·Tris(+)复合物的1.3 Å X射线结构中[Gabelli, S. B., 等人(2004年)《结构》12卷,927 - 935页],GDP离去基团与五个催化组分相互作用:R37、Y103、R52、R65和必需的Mg(2+)。根据位点特异性突变体对k(cat)的影响确定,这些组分分别对催化作用贡献24倍、100倍、309倍、24倍和≥10^5倍的因子。R37和Y103都结合GDP的β - 磷酸基团,且彼此仅相距5.0 Å。因此,R37Q/Y103F双突变体在k(cat)上表现出两个单突变体的部分加和效应,表明R37和Y103在促进催化方面具有协同性,而对K(m)具有拮抗作用。其次,保守残基D22的位置能够接受来自在C1处发生取代反应的糖的C2 - OH基团的氢键,这是通过将α - D - 甘露糖基建模到糖结合位点所显示的。对于GDP - α - D - 甘露糖的水解反应,D22A和D22N突变分别使k(cat)降低了10^(2.1)倍和10^(2.6)倍,并且对K(m)的影响较小,这表明D22阴离子稳定了阳离子氧碳鎓过渡态。第三,氟化底物GDP - 2F - α - D - 甘露糖,其阳离子氧碳鎓过渡态会因吸电子作用而不稳定,表现出k(cat)降低了16倍,而K(m)有较小的2.5倍增加。D22A和D22N突变进一步使GDP - 2F - α - D - 甘露糖的k(cat)降低至与GDP - α - D - 甘露糖相似的值,并降低了氟化底物的K(m)。选择组氨酸作为一般碱而非其他Nudix酶中更常见的谷氨酸,并非是因为组氨酸的碱性更强,因为活性复合物中E124的pK(a)(7.7)超过了H124的pK(a)(6.7),并且在pH 9.3时,H124E突变使k(cat)降低了10^(2.2)倍,K(m)增加了4.0倍。同样,在X射线结构中检测到的催化三联体(H124 - - -Y127 - - -P120)对于定位H124并非必需,因为无论以H124还是E124作为一般碱,Y127F突变对k(cat)和K(m)的影响都仅为2倍。因此,可能需要一个中性的组氨酸而非带负电的谷氨酸来维持活性复合物中的电中性。