Suppr超能文献

Characterization of polyesters prepared from three different phthalic acid isomers by CID-ESI-FT-ICR and PSD-MALDI-TOF mass spectrometry.

作者信息

Laine Olli, Laitinen Tuomo, Vainiotalo Pirjo

机构信息

Department of Chemistry, University of Joensuu, Finland.

出版信息

Anal Chem. 2002 Aug 15;74(16):4250-8. doi: 10.1021/ac0112566.

Abstract

Polyesters prepared from the same diol, 2-butyl-2-ethyl-1,3-propanediol, but different phthalic acid isomers, phthalic, isophthalic, and terephthalic acid, were characterized by collision-induced dissociation electrospray ionization Fourier transform ion cyclotron resonance (CID-ESI-FT-ICR) and postsource-decay matrix-assisted laser desorption/ionization time-of-flight (PSD-MALDI-TOF) mass spectrometry. Sodiated dihydroxyl-terminated polyester oligomers containing five repeating units at m/z 1634 were selected as precursor ions for dissociation studies. Two main mechanisms occurred in the fragmentation of all of the polyesters, since dissociation of the oligomers was initiated by hydrogen rearrangement or transesterification reactions. Polyesters prepared from different phthalic acid isomers could be distinguished by their fragmentation behavior. Polyester prepared from phthalic acid was easily identified by using both CID-ESI-FT-ICR and PSD-MALDI-TOF mass spectrometry. However, distinguishing between the polyesters prepared from isophthalic and terephthalic acid succeeded marginally only with CID-ESI-FT-ICR mass spectrometry. Molecular dynamics calculations were used to obtain an idea of the fragmentation behavior of the polyesters. The low-energy structures of the precursor ions were determined, and the coordination of the oxygen atoms of the polyester oligomers to the sodium cation was examined more closely. Both the experimental and the theoretical studies showed that the sodium ion affinity of polyester changed with the phthalic acid isomer.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验