Lestienne Rémy, Quenet Brigitte, Bouret Sébastien, Parodi Olivier
Neuromodulation et Processus Mnésiques, Lab. Neurobiologie des Processus Adaptatifs, Université P. et M. Curie, 9 Quai St Bernard, 75005 Paris, France.
Biol Cybern. 2002 Sep;87(3):220-9. doi: 10.1007/s00422-002-0329-y.
Recent studies have shown that the insect olfactory system uses a spatio-temporal encoding of odours in the population of projection neurons in the antennal lobe, and suggest that the information thus coded is spread across a large population of Kenyon cells in the mushroom bodies. At this stage, the temporal part of the code might be transformed into a spatial code, especially via the temporally sensitive mechanisms of paired-pulse facilitation and feedback inhibition with its possible associated rebound. We explore here a simple model of the olfactory system using a three-layer network of formal neurons, comprising a fixed number (three) of projection and inhibitory neurons, but a variable number of Kenyon cells. We show how enlarging the divergence of the network (i.e. the ratio between the number of Kenyon cells to the number of input - projection - neurons) alters the number of different output spatial states in response to a fixed set of spatio-temporal inputs, and may therefore improve its effectiveness in discriminating between these inputs. Such enlarged divergence also reduces the variation of this effectiveness among random realizations of the network connectivity. Our model shows that the discriminative effectiveness first increases with the divergence, and then plateaus for a divergence factor of approximately 20. The maximal average number of different outputs was 470.2, which was computed from some simulations with random realizations of connectivity and with a set of 512 possible inputs. The discriminative effectiveness of the network is sensitive to paired-pulse facilitation, and especially to inhibition with rebound.
最近的研究表明,昆虫嗅觉系统在触角叶投射神经元群体中使用气味的时空编码,并表明这样编码的信息分布在蘑菇体中的大量肯扬细胞中。在这个阶段,编码的时间部分可能会转化为空间编码,特别是通过配对脉冲易化和反馈抑制及其可能相关的反弹的时间敏感机制。我们在这里使用一个由形式神经元组成的三层网络探索一种简单的嗅觉系统模型,该网络包括固定数量(三个)的投射神经元和抑制性神经元,但肯扬细胞的数量是可变的。我们展示了扩大网络的发散度(即肯扬细胞数量与输入投射神经元数量之比)如何改变响应一组固定的时空输入时不同输出空间状态的数量,因此可能提高其区分这些输入的有效性。这种扩大的发散度还减少了网络连接随机实现中这种有效性的变化。我们的模型表明,区分有效性首先随着发散度增加,然后在发散因子约为20时趋于平稳。不同输出的最大平均数量为470.2,这是通过对连接性的随机实现和一组512种可能输入的一些模拟计算得出的。网络的区分有效性对配对脉冲易化敏感,尤其对反弹抑制敏感。