Huerta Ramón, Nowotny Thomas, García-Sanchez Marta, Abarbanel H D I, Rabinovich M I
Institute for Nonlinear Science, University of California San Diego, La Jolla CA 92093-0402, U.S.A.
Neural Comput. 2004 Aug;16(8):1601-40. doi: 10.1162/089976604774201613.
We propose a theoretical framework for odor classification in the olfactory system of insects. The classification task is accomplished in two steps. The first is a transformation from the antennal lobe to the intrinsic Kenyon cells in the mushroom body. This transformation into a higher-dimensional space is an injective function and can be implemented without any type of learning at the synaptic connections. In the second step, the encoded odors in the intrinsic Kenyon cells are linearly classified in the mushroom body lobes. The neurons that perform this linear classification are equivalent to hyperplanes whose connections are tuned by local Hebbian learning and by competition due to mutual inhibition. We calculate the range of values of activity and size of the network required to achieve efficient classification within this scheme in insect olfaction. We are able to demonstrate that biologically plausible control mechanisms can accomplish efficient classification of odors.
我们提出了一个用于昆虫嗅觉系统中气味分类的理论框架。分类任务分两步完成。第一步是从触角叶到蘑菇体中固有肯扬细胞的转换。这种向高维空间的转换是一个单射函数,并且可以在突触连接处不进行任何类型的学习来实现。在第二步中,固有肯扬细胞中编码的气味在蘑菇体叶中进行线性分类。执行这种线性分类的神经元等同于超平面,其连接通过局部赫布学习和相互抑制引起的竞争进行调整。我们计算了在昆虫嗅觉的这个方案内实现高效分类所需的活动值范围和网络大小。我们能够证明生物学上合理的控制机制可以完成气味的高效分类。