Suppr超能文献

5,6-二甲基呫吨酮-4-乙酸(DMXAA):一种用于癌症治疗的新型生物反应调节剂。

5,6-dimethylxanthenone-4-acetic acid (DMXAA): a new biological response modifier for cancer therapy.

作者信息

Zhou Shufeng, Kestell Philip, Baguley Bruce C, Paxton James W

机构信息

Division of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University ofAuckland, New Zealand.

出版信息

Invest New Drugs. 2002 Aug;20(3):281-95. doi: 10.1023/a:1016215015530.

Abstract

The investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was developed by the Auckland Cancer Society Research Centre (ACSRC). It has recently completed Phase I trials in New Zealand and UK under the direction of the Cancer Research Campaign's Phase I/II Clinical Trials Committee. As a biological response modifier, pharmacological and toxicological properties of DMXAA are remarkably different from most conventional chemotherapeutic agents. Induction of cytokines (particularly tumour necrosis factor (TNF-alpha), serotonin and nitric oxide (NO)), anti-vascular and anti-angiogenic effects are considered to be major mechanisms of action based on in vitro and animal studies. In cancer patients of Phase I study, DMXAA also exhibited various biological effects, including induction of TNF-alpha, serotonin and NO, which are consistent with those effects observed in in vitro and animal studies. Preclinical studies indicated that DMXAA had more potent anti-tumour activity compared to flavone-8-acetic acid (FAA). In contrast to FAA that did not show anti-tumour activity in cancer patients, DMXAA (22 mg/kg by intravenous infusion over 20 min) resulted in partial response in one patient with metastatic cervical squamous carcinoma in a Phase I study where 65 cancer patients were enrolled in New Zealand. The maximum tolerated dose (MTD) in mouse, rabbit, rat and human was 30, 99, 330, and 99 mg/kg respectively. The dose-limiting toxicity of DMXAA in cancer patients included acute reversible tremor, cognitive impairment, visual disturbance, dyspnoea and anxiety. The plasma protein binding and distribution into blood cells of DMXAA are dependent on species and drug concentration. DMXAA is extensively metabolised, mainly by glucuronidation of its acetic acid side chain and 6-methylhydroxylation, giving rise to DMXAA acyl glucuronide (DMXAA-G), and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA), which are excreted into bile and urine. DMXAA-G has been shown to be chemically reactive, undergoing hydrolysis, intramolecular migration and covalent binding. Studies have indicated that DMXAA glucuronidation is catalysed by uridine diphosphate glucuronosyltransferases (UGT1A9 and UGT2B7), and 6-methylhydroxylation by cytochrome P450 (CYP1A2). Non-linear plasma pharmacokinetics of DMXAA has been observed in animals and patients, presumably due to saturation of the elimination process and plasma protein binding. Species differences in DMXAA plasma pharmacokinetics have been observed, with the rabbit having the greatest plasma clearance, followed by the human, rat and mouse. In vivo disposition studies in these species did not provide an explanation for the differences in MTD. Co-administration of DMXAA with other drugs has been shown to result in enhanced anti-tumour activity and alterations in pharmacokinetics, as reported for the combination of DMXAA with melphalan, thalidomide, cyproheptadine, and the bioreductive agent tirapazamine, in mouse models. Species-dependent DMXAA-thalidomide pharmacokinetic interactions have been observed. Co-administration of thalidomide significantly increased the plasma area of the plasma concentration-time curve (AUC) of DMXAA in mice, but had no effect on DMXAA's pharmacokinetics in the rat. It appears that the pharmacological and toxicological properties of DMXAA as a new biological response modifier are unlikely to be predicted based on preclinical studies. Similar to many biological response modifiers, DMXAA alone did not show striking anti-tumour activity in patients. However, preclinical studies of DMXAA-drug combinations indicate that DMXAA may have a potential role in cancer treatment when co-administered with other drugs. Further studies are required to explore the molecular targets of DMXAA and mechanisms for the interactions with other drugs co-administered during combination treatment, which may allow for the optimisation of DMXAA-based chemotherapy.

摘要

研究性抗癌药物5,6 - 二甲基呫吨酮 - 4 - 乙酸(DMXAA)由奥克兰癌症协会研究中心(ACSRC)研发。最近,在癌症研究运动的I/II期临床试验委员会的指导下,它在新西兰和英国完成了I期试验。作为一种生物反应调节剂,DMXAA的药理和毒理学特性与大多数传统化疗药物显著不同。基于体外和动物研究,细胞因子(特别是肿瘤坏死因子(TNF-α)、血清素和一氧化氮(NO))的诱导、抗血管和抗血管生成作用被认为是主要作用机制。在I期研究的癌症患者中,DMXAA也表现出各种生物学效应,包括TNF-α、血清素和NO的诱导,这与在体外和动物研究中观察到的效应一致。临床前研究表明,与黄酮 - 8 - 乙酸(FAA)相比,DMXAA具有更强的抗肿瘤活性。与在癌症患者中未显示抗肿瘤活性的FAA不同,在新西兰一项有65名癌症患者参与的I期研究中,DMXAA(20分钟内静脉输注22mg/kg)使一名转移性宫颈鳞状癌患者产生了部分缓解。在小鼠、兔子、大鼠和人类中的最大耐受剂量(MTD)分别为30、99、330和99mg/kg。DMXAA在癌症患者中的剂量限制性毒性包括急性可逆性震颤、认知障碍、视觉障碍、呼吸困难和焦虑。DMXAA与血浆蛋白的结合以及在血细胞中的分布取决于物种和药物浓度。DMXAA被广泛代谢,主要通过其乙酸侧链的葡萄糖醛酸化和6 - 甲基羟基化,产生DMXAA酰基葡萄糖醛酸(DMXAA - G)和6 - 羟基甲基 - 5 - 甲基呫吨酮 - 4 - 乙酸(6 - OH - MXAA),它们被排泄到胆汁和尿液中。已证明DMXAA - G具有化学反应性,会发生水解、分子内迁移和共价结合。研究表明,DMXAA的葡萄糖醛酸化由尿苷二磷酸葡萄糖醛酸转移酶(UGT1A9和UGT2B7)催化,6 - 甲基羟基化由细胞色素P450(CYP1A2)催化。在动物和患者中均观察到DMXAA的非线性血浆药代动力学,这可能是由于消除过程和血浆蛋白结合的饱和所致。已观察到DMXAA血浆药代动力学存在物种差异,兔子的血浆清除率最高,其次是人类、大鼠和小鼠。在这些物种中的体内处置研究并未对MTD的差异作出解释。如在小鼠模型中DMXAA与美法仑、沙利度胺、赛庚啶和生物还原剂替拉帕米联合使用的报道所示,DMXAA与其他药物联合使用已被证明可增强抗肿瘤活性并改变药代动力学。已观察到DMXAA - 沙利度胺的药代动力学相互作用具有物种依赖性。在小鼠中,沙利度胺联合给药显著增加了DMXAA的血浆浓度 - 时间曲线下面积(AUC),但对大鼠中DMXAA的药代动力学无影响。看来,作为一种新型生物反应调节剂,DMXAA的药理和毒理学特性不太可能基于临床前研究进行预测。与许多生物反应调节剂类似,DMXAA单独使用时在患者中未显示出显著的抗肿瘤活性。然而,DMXAA与药物联合使用的临床前研究表明,DMXAA与其他药物联合使用时可能在癌症治疗中发挥潜在作用。需要进一步研究以探索DMXAA的分子靶点以及联合治疗期间与其他联合使用药物相互作用的机制,这可能有助于优化基于DMXAA的化疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验