Nicolle Gaëlle M, Tóth Eva, Eisenwiener Klaus-Peter, Mäcke Helmut R, Merbach André E
Swiss Federal Institute of Technology, EPFL-BCH, 1015 Lausanne, Switzerland.
J Biol Inorg Chem. 2002 Sep;7(7-8):757-69. doi: 10.1007/s00775-002-0353-3. Epub 2002 Mar 23.
17O NMR and (1)H NMRD studies have been performed on a series of Gd(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives as potential liver-specific magnetic resonance imaging (MRI) contrast agents. They bear aliphatic side chains which make them capable of micellar self-organization. The compounds differ in the length (C10-C18) and in the chemical nature (alkyl or monoamide-alkyl) of their lipophilic chain. We have established a convenient method to determine the critical micellar concentration (cmc) of paramagnetic surfactants by (1)H relaxivity measurements. This technique can be easily used over a large temperature range; thus, it can find wide application outside the field of MRI contrast agents. The knowledge of the cmc allowed us to determine the parameters governing the water proton relaxivity of the Gd(III) chelates in both nonaggregated and aggregated micellar forms. The relaxation data of the micellar complexes have been interpreted with the Lipari-Szabo approach. This model allows a local motion to be separated from the global tumbling of the whole micelle (modulated by a local, tau(l), and a global, tau(g), rotational correlation time, respectively). The aggregation substantially affects the rotational dynamics and thus increases the proton relaxivity of the Gd(III) chelates. The global rotational correlation times increase with increasing length of the side chain (500-2800 ps for C10-C18). Local motions are also influenced by the length and by the hydrophobicity of the side chain. The analysis of the relaxation data reveals considerable flexibility for these micellar aggregates. The rate of water exchange obtained for these chelates is identical to that for Gd(DOTA)(H(2)O) (k(ex)(298)= 4.8 x 10(6)s(-1))and is not sensitive either to micellization or to differences in the aliphatic chain. A relaxivity gain in such systems could be attained by simultaneously optimizing the water exchange by modifications of the chelate and increasing the micelle rigidity by using water-soluble surfactants with more hydrophobic side chains.
已对一系列钆(III)1,4,7,10 - 四氮杂环十二烷 - 1,4,7,10 - 四乙酸(DOTA)衍生物进行了¹⁷O核磁共振和(¹)H核磁共振扩散研究,这些衍生物是潜在的肝脏特异性磁共振成像(MRI)造影剂。它们带有脂肪族侧链,使其能够进行胶束自组装。这些化合物的亲脂性链在长度(C10 - C18)和化学性质(烷基或单酰胺 - 烷基)上有所不同。我们已经建立了一种通过¹H弛豫率测量来确定顺磁性表面活性剂临界胶束浓度(cmc)的简便方法。该技术可以在很宽的温度范围内轻松使用;因此,它可以在MRI造影剂领域之外得到广泛应用。cmc的知识使我们能够确定在非聚集和聚集胶束形式下控制钆(III)螯合物水质子弛豫率的参数。胶束复合物的弛豫数据已用Lipari - Szabo方法进行了解释。该模型允许将局部运动与整个胶束的整体翻滚分开(分别由局部旋转相关时间tau(l)和全局旋转相关时间tau(g)调制)。聚集显著影响旋转动力学,从而增加了钆(III)螯合物的质子弛豫率。全局旋转相关时间随着侧链长度的增加而增加(C10 - C18为500 - 2800皮秒)。局部运动也受到侧链长度和疏水性的影响。弛豫数据分析表明这些胶束聚集体具有相当大的灵活性。这些螯合物获得的水交换速率与[Gd(DOTA)(H₂O)]⁻相同(k(ex)(298)= 4.8×10⁶ s⁻¹),并且对胶束化或脂肪族链的差异均不敏感。通过同时通过螯合物修饰优化水交换以及使用具有更多疏水侧链的水溶性表面活性剂增加胶束刚性,可以在这样的系统中实现弛豫率的提高。