Mitchell David A, Tongta A, Stuart D M, Krieger N
Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Cx. P. 19046, Jardim das Américas, Curitiba 81531-990, Paraná, Brazil.
Biotechnol Bioeng. 2002 Oct 5;80(1):114-22. doi: 10.1002/bit.10356.
The mixing and heat transfer phenomena within rotating drum bioreactors (RDBs) used for solid-state fermentation processes are poorly studied. The potential for the establishment of axial temperature gradients within the substrate bed was explored using a heat transfer model. For growth of Aspergillus oryzae on wheat bran within a 24 L RDB with air at a superficial velocity of 0.0023 m s(-1) and 15% relative humidity, the model predicts an axial gradient between the air inlet and outlet of 2 degrees C during rapid growth, compared to experimental axial temperature gradients of between 1 and 4 degrees C. Undesirably high temperatures occur throughout the bed under these operating conditions, but the model predicts that good temperature control can be achieved using humid air (90% relative humidity) at superficial velocities of 1 m s(-1) for a 204 L RDB. For a 2200 L RDB, good temperature control is predicted with superficial velocities as low as 0.4 m s(-1) with the airflow being switched from 90% to 15% relative humidity whenever the temperature at the outlet end of the drum exceeds the optimal temperature for growth. This work suggests that significant axial temperature gradients can arise in those RDBs that lack provision for axial mixing. It is therefore advisable to use angled lifters within RDBs to promote axial mixing.
用于固态发酵过程的转鼓式生物反应器(RDB)内的混合和传热现象研究较少。利用传热模型探讨了在底物床内建立轴向温度梯度的可能性。对于在24升RDB中,以0.0023米每秒的表观速度和15%的相对湿度通入空气的条件下,米曲霉在麦麸上生长的情况,该模型预测在快速生长期间,空气进出口之间的轴向梯度为2摄氏度,而实验测得的轴向温度梯度为1至4摄氏度。在这些操作条件下,整个床层会出现不理想的高温,但该模型预测,对于204升的RDB,使用表观速度为1米每秒的潮湿空气(相对湿度90%)可以实现良好的温度控制。对于2200升的RDB,预测当表观速度低至0.4米每秒时,只要转鼓出口端的温度超过生长的最佳温度,气流的相对湿度从90%切换到15%,就能实现良好的温度控制。这项工作表明,在那些缺乏轴向混合装置的RDB中可能会出现显著的轴向温度梯度。因此,建议在RDB中使用倾斜的提升装置来促进轴向混合。