Cranstoun Stephen D, Ombao Hernando C, von Sachs Rainer, Guo Wensheng, Litt Brian
Department of Bioengineering, University of Pennsylvania, Philadelphia 19104, USA.
IEEE Trans Biomed Eng. 2002 Sep;49(9):988-96. doi: 10.1109/TBME.2002.802015.
In this paper, we apply a new time-frequency spectral estimation method for multichannel data to epileptiform electroencephalography (EEG). The method is based on the smooth localized complex exponentials (SLEX) functions which are time-frequency localized versions of the Fourier functions and, hence, are ideal for analyzing nonstationary signals whose spectral properties evolve over time. The SLEX functions are simultaneously orthogonal and localized in time and frequency because they are obtained by applying a projection operator rather than a window or taper. In this paper, we present the Auto-SLEX method which is a statistical method that 1) computes the periodogram using the SLEX transform, 2) automatically segments the signal into approximately stationary segments using an objective criterion that is based on log energy, and 3) automatically selects the optimal bandwidth of the spectral smoothing window. The method is applied to the intracranial EEG from a patient with temporal lobe epilepsy. This analysis reveals a reduction in average duration of stationarity in preseizure epochs of data compared to baseline. These changes begin up to hours prior to electrical seizure onset in this patient.
在本文中,我们将一种用于多通道数据的新时频谱估计方法应用于癫痫样脑电图(EEG)。该方法基于平滑局部复指数(SLEX)函数,这些函数是傅里叶函数的时频局部化版本,因此非常适合分析频谱特性随时间演变的非平稳信号。SLEX函数在时间和频率上同时正交且局部化,因为它们是通过应用投影算子而不是窗口或锥度获得的。在本文中,我们提出了自动SLEX方法,这是一种统计方法,它:1)使用SLEX变换计算周期图;2)使用基于对数能量的客观标准将信号自动分割成近似平稳的段;3)自动选择频谱平滑窗口的最佳带宽。该方法应用于一名颞叶癫痫患者的颅内脑电图。该分析揭示了与基线相比,癫痫发作前数据片段的平均平稳持续时间有所减少。在该患者中,这些变化在癫痫发作前数小时就开始出现。