Suppr超能文献

非平稳信号中相互依赖关系的时频特征:在癫痫脑电信号中的应用

Time-frequency characterization of interdependencies in nonstationary signals: application to epileptic EEG.

作者信息

Ansari-Asl Karim, Bellanger Jean-Jacques, Bartolomei Fabrice, Wendling Fabrice, Senhadji Lotfi

机构信息

Laboratoire Traitement du Signal et de L'Image, INERM U 642, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.

出版信息

IEEE Trans Biomed Eng. 2005 Jul;52(7):1218-26. doi: 10.1109/TBME.2005.847541.

Abstract

For the past decades, numerous works have been dedicated to the development of signal processing methods aimed at measuring the degree of association between electroencephalographic (EEG) signals. This interdependency parameter, which may be defined in various ways, is often used to characterize a functional coupling between different brain structures or regions during either normal or pathological processes. In this paper, we focus on the time-frequency characterization of the interdependency between signals. Particularly, we propose a novel estimator of the linear relationship between nonstationary signals based on the cross correlation of narrow band filtered signals. This estimator is compared to a more classical estimator based on the coherence function. In a simulation framework, results show that it may exhibit better statistical performances (bias and variance or mean square error) when a priori knowledge about time delay between signals is available. On real data (intracerebral EEG signals), results show that this estimator may also enhance the readability of the time-frequency representation of relationship and, thus, can improve the interpretation of nonstationary interdependencies in EEG signals. Finally, we illustrate the importance of characterizing the relationship in both time and frequency domains by comparing with frequency-independent methods (linear and nonlinear).

摘要

在过去几十年中,大量工作致力于开发信号处理方法,旨在测量脑电图(EEG)信号之间的关联程度。这个相互依赖参数可以用多种方式定义,常用于表征正常或病理过程中不同脑结构或区域之间的功能耦合。在本文中,我们专注于信号之间相互依赖关系的时频特征。特别地,我们基于窄带滤波信号的互相关提出了一种非平稳信号之间线性关系的新型估计器。将该估计器与基于相干函数的更经典估计器进行比较。在模拟框架中,结果表明,当有关于信号之间时间延迟的先验知识时,它可能表现出更好的统计性能(偏差和方差或均方误差)。在实际数据(脑内EEG信号)上,结果表明该估计器还可以增强关系的时频表示的可读性,从而能够改善对EEG信号中非平稳相互依赖关系的解释。最后,通过与频率无关方法(线性和非线性)进行比较,我们说明了在时域和频域中表征关系的重要性。

相似文献

4
Entropies for detection of epilepsy in EEG.脑电图中癫痫检测的熵值
Comput Methods Programs Biomed. 2005 Dec;80(3):187-94. doi: 10.1016/j.cmpb.2005.06.012. Epub 2005 Oct 10.
9
A nonstationary model of newborn EEG.新生儿脑电图的非平稳模型。
IEEE Trans Biomed Eng. 2007 Jan;54(1):19-28. doi: 10.1109/TBME.2006.886667.

引用本文的文献

5
Directed differential connectivity graph of interictal epileptiform discharges.致发性癫痫样放电的定向差分连通图。
IEEE Trans Biomed Eng. 2011 Apr;58(4):884-93. doi: 10.1109/TBME.2010.2099227. Epub 2010 Dec 13.

本文引用的文献

1
Epileptic seizure prediction and control.癫痫发作的预测与控制。
IEEE Trans Biomed Eng. 2003 May;50(5):549-58. doi: 10.1109/tbme.2003.810705.
7
Measuring the coherence of intracranial electroencephalograms.测量颅内脑电图的相干性。
Clin Neurophysiol. 1999 Oct;110(10):1717-25. doi: 10.1016/s1388-2457(99)00136-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验